fancy_gym/fancy_gym/envs/mujoco/half_cheetah_jump/half_cheetah_jump.py

146 lines
4.7 KiB
Python

import os
from typing import Tuple, Union, Optional, Any, Dict
import numpy as np
from gymnasium.core import ObsType
from gymnasium.envs.mujoco.half_cheetah_v4 import HalfCheetahEnv, DEFAULT_CAMERA_CONFIG
from gymnasium import utils
from gymnasium.envs.mujoco import MujocoEnv
from gymnasium.spaces import Box
MAX_EPISODE_STEPS_HALFCHEETAHJUMP = 100
class HalfCheetahEnvCustomXML(HalfCheetahEnv):
def __init__(
self,
xml_file,
forward_reward_weight=1.0,
ctrl_cost_weight=0.1,
reset_noise_scale=0.1,
exclude_current_positions_from_observation=True,
**kwargs,
):
utils.EzPickle.__init__(
self,
xml_file,
forward_reward_weight,
ctrl_cost_weight,
reset_noise_scale,
exclude_current_positions_from_observation,
**kwargs,
)
self._forward_reward_weight = forward_reward_weight
self._ctrl_cost_weight = ctrl_cost_weight
self._reset_noise_scale = reset_noise_scale
self._exclude_current_positions_from_observation = (
exclude_current_positions_from_observation
)
if exclude_current_positions_from_observation:
observation_space = Box(
low=-np.inf, high=np.inf, shape=(18,), dtype=np.float64
)
else:
observation_space = Box(
low=-np.inf, high=np.inf, shape=(19,), dtype=np.float64
)
MujocoEnv.__init__(
self,
xml_file,
5,
observation_space=observation_space,
default_camera_config=DEFAULT_CAMERA_CONFIG,
**kwargs,
)
class HalfCheetahJumpEnv(HalfCheetahEnvCustomXML):
"""
_ctrl_cost_weight 0.1 -> 0.0
"""
def __init__(self,
xml_file='cheetah.xml',
forward_reward_weight=1.0,
ctrl_cost_weight=0.0,
reset_noise_scale=0.1,
context=True,
exclude_current_positions_from_observation=True,
max_episode_steps=100):
self.current_step = 0
self.max_height = 0
# self.max_episode_steps = max_episode_steps
self.goal = 0
self.context = context
xml_file = os.path.join(os.path.dirname(__file__), "assets", xml_file)
super().__init__(xml_file=xml_file,
forward_reward_weight=forward_reward_weight,
ctrl_cost_weight=ctrl_cost_weight,
reset_noise_scale=reset_noise_scale,
exclude_current_positions_from_observation=exclude_current_positions_from_observation)
def step(self, action):
self.current_step += 1
self.do_simulation(action, self.frame_skip)
height_after = self.get_body_com("torso")[2]
self.max_height = max(height_after, self.max_height)
# Didnt use fell_over, because base env also has no done condition - Paul and Marc
# fell_over = abs(self.sim.data.qpos[2]) > 2.5 # how to figure out if the cheetah fell over? -> 2.5 oke?
# TODO: Should a fall over be checked here?
terminated = False
truncated = False
ctrl_cost = self.control_cost(action)
costs = ctrl_cost
if self.current_step == MAX_EPISODE_STEPS_HALFCHEETAHJUMP:
height_goal_distance = -10 * np.linalg.norm(self.max_height - self.goal) + 1e-8 if self.context \
else self.max_height
rewards = self._forward_reward_weight * height_goal_distance
else:
rewards = 0
observation = self._get_obs()
reward = rewards - costs
info = {
'height': height_after,
'max_height': self.max_height
}
return observation, reward, terminated, truncated, info
def _get_obs(self):
return np.append(super()._get_obs(), self.goal)
def reset(self, *, seed: Optional[int] = None, options: Optional[Dict[str, Any]] = None) \
-> Tuple[ObsType, Dict[str, Any]]:
self.max_height = 0
self.current_step = 0
self.goal = self.np_random.uniform(1.1, 1.6, 1) # 1.1 1.6
return super().reset(seed=seed, options=options)
# overwrite reset_model to make it deterministic
def reset_model(self):
# TODO remove if not needed!
noise_low = -self._reset_noise_scale
noise_high = self._reset_noise_scale
qpos = self.init_qpos # + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nq)
qvel = self.init_qvel # + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nv)
self.set_state(qpos, qvel)
observation = self._get_obs()
return observation