184 lines
5.5 KiB
Python
184 lines
5.5 KiB
Python
import os
|
|
import time
|
|
|
|
import gym
|
|
import numpy as np
|
|
from gym import spaces, utils
|
|
from gym.utils import seeding
|
|
|
|
import matplotlib as mpl
|
|
import matplotlib.pyplot as plt
|
|
|
|
if os.environ.get("DISPLAY", None):
|
|
mpl.use('Qt5Agg')
|
|
|
|
|
|
class SimpleReacherEnv(gym.Env, utils.EzPickle):
|
|
"""
|
|
Simple Reaching Task without any physics simulation.
|
|
Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions
|
|
towards the end of the trajectory.
|
|
"""
|
|
|
|
def __init__(self, n_links):
|
|
super().__init__()
|
|
self.link_lengths = np.ones(n_links)
|
|
self.n_links = n_links
|
|
self.dt = 0.1
|
|
|
|
self._goal_pos = None
|
|
|
|
self._joints = None
|
|
self._joint_angle = None
|
|
self._angle_velocity = None
|
|
|
|
self.max_torque = 1 # 10
|
|
self.steps_before_reward = 0
|
|
|
|
action_bound = np.ones((self.n_links,))
|
|
state_bound = np.hstack([
|
|
[np.pi] * self.n_links, # cos
|
|
[np.pi] * self.n_links, # sin
|
|
[np.inf] * self.n_links, # velocity
|
|
[np.inf] * 2, # x-y coordinates of target distance
|
|
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
|
])
|
|
self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
|
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
|
|
|
self.fig = None
|
|
self.metadata = {'render.modes': ["human"]}
|
|
|
|
self._steps = 0
|
|
self.seed()
|
|
|
|
def step(self, action):
|
|
|
|
action = self._scale_action(action)
|
|
|
|
self._angle_velocity = self._angle_velocity + self.dt * action
|
|
self._joint_angle = angle_normalize(self._joint_angle + self.dt * self._angle_velocity)
|
|
self._update_joints()
|
|
self._steps += 1
|
|
|
|
reward, info = self._get_reward(action)
|
|
|
|
# done = np.abs(self.end_effector - self._goal_pos) < 0.1
|
|
done = False
|
|
|
|
return self._get_obs().copy(), reward, done, info
|
|
|
|
def _scale_action(self, action):
|
|
"""
|
|
scale actions back in order to provide normalized actions \in [0,1]
|
|
|
|
Args:
|
|
action: action to scale
|
|
|
|
Returns: action according to self.max_torque
|
|
|
|
"""
|
|
|
|
ub = self.max_torque
|
|
lb = -self.max_torque
|
|
|
|
action = lb + (action + 1.) * 0.5 * (ub - lb)
|
|
return np.clip(action, lb, ub)
|
|
|
|
def _get_obs(self):
|
|
theta = self._joint_angle
|
|
return np.hstack([
|
|
np.cos(theta),
|
|
np.sin(theta),
|
|
self._angle_velocity,
|
|
self.end_effector - self._goal_pos,
|
|
self._steps
|
|
])
|
|
|
|
def _update_joints(self):
|
|
"""
|
|
update _joints to get new end effector position. The other links are only required for rendering.
|
|
Returns:
|
|
|
|
"""
|
|
angles = np.cumsum(self._joint_angle)
|
|
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
|
|
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
|
|
|
|
def _get_reward(self, action):
|
|
diff = self.end_effector - self._goal_pos
|
|
reward_dist = 0
|
|
|
|
# TODO: Is this the best option
|
|
if self._steps >= self.steps_before_reward:
|
|
reward_dist = - np.linalg.norm(diff)
|
|
# reward_dist = np.exp(-0.1 * diff ** 2).mean()
|
|
# reward_dist = - (diff ** 2).mean()
|
|
|
|
reward_ctrl = (action ** 2).sum()
|
|
reward = reward_dist - reward_ctrl
|
|
return reward, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl)
|
|
|
|
def reset(self):
|
|
|
|
# TODO: maybe do initialisation more random?
|
|
# Sample only orientation of first link, i.e. the arm is always straight.
|
|
self._joint_angle = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)])
|
|
self._angle_velocity = np.zeros(self.n_links)
|
|
self._joints = np.zeros((self.n_links + 1, 2))
|
|
self._update_joints()
|
|
self._steps = 0
|
|
|
|
self._goal_pos = self._get_random_goal()
|
|
return self._get_obs().copy()
|
|
|
|
def _get_random_goal(self):
|
|
center = self._joints[0]
|
|
|
|
# Sample uniformly in circle with radius R around center of reacher.
|
|
R = np.sum(self.link_lengths)
|
|
r = R * np.sqrt(self.np_random.uniform())
|
|
theta = self.np_random.uniform() * 2 * np.pi
|
|
return center + r * np.stack([np.cos(theta), np.sin(theta)])
|
|
|
|
def seed(self, seed=None):
|
|
self.np_random, seed = seeding.np_random(seed)
|
|
return [seed]
|
|
|
|
def render(self, mode='human'): # pragma: no cover
|
|
if self.fig is None:
|
|
self.fig = plt.figure()
|
|
plt.ion()
|
|
plt.show()
|
|
else:
|
|
plt.figure(self.fig.number)
|
|
|
|
plt.cla()
|
|
|
|
# Arm
|
|
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
|
|
|
# goal
|
|
goal_pos = self._goal_pos.T
|
|
plt.plot(goal_pos[0], goal_pos[1], 'gx')
|
|
# distance between end effector and goal
|
|
plt.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--')
|
|
|
|
lim = np.sum(self.link_lengths) + 0.5
|
|
plt.xlim([-lim, lim])
|
|
plt.ylim([-lim, lim])
|
|
# plt.draw()
|
|
# plt.pause(1e-4) pushed window to foreground, which is annoying.
|
|
self.fig.canvas.flush_events()
|
|
|
|
def close(self):
|
|
del self.fig
|
|
|
|
@property
|
|
def end_effector(self):
|
|
return self._joints[self.n_links].T
|
|
|
|
|
|
def angle_normalize(x):
|
|
return ((x + np.pi) % (2 * np.pi)) - np.pi
|