fancy_gym/alr_envs/alr/mujoco/hopper_jump/hopper_jump.py
2022-05-31 19:41:08 +02:00

345 lines
14 KiB
Python

from gym.envs.mujoco.hopper_v3 import HopperEnv
import numpy as np
import os
MAX_EPISODE_STEPS_HOPPERJUMP = 250
class ALRHopperJumpEnv(HopperEnv):
"""
Initialization changes to normal Hopper:
- healthy_reward: 1.0 -> 0.1 -> 0
- healthy_angle_range: (-0.2, 0.2) -> (-float('inf'), float('inf'))
- healthy_z_range: (0.7, float('inf')) -> (0.5, float('inf'))
"""
def __init__(self,
xml_file='hopper_jump.xml',
forward_reward_weight=1.0,
ctrl_cost_weight=1e-3,
healthy_reward=0.0,
penalty=0.0,
context=True,
terminate_when_unhealthy=False,
healthy_state_range=(-100.0, 100.0),
healthy_z_range=(0.5, float('inf')),
healthy_angle_range=(-float('inf'), float('inf')),
reset_noise_scale=5e-3,
exclude_current_positions_from_observation=True,
max_episode_steps=250):
self.current_step = 0
self.max_height = 0
self.max_episode_steps = max_episode_steps
self.penalty = penalty
self.goal = 0
self.context = context
self.exclude_current_positions_from_observation = exclude_current_positions_from_observation
self._floor_geom_id = None
self._foot_geom_id = None
self.contact_with_floor = False
self.init_floor_contact = False
self.has_left_floor = False
self.contact_dist = None
xml_file = os.path.join(os.path.dirname(__file__), "assets", xml_file)
super().__init__(xml_file, forward_reward_weight, ctrl_cost_weight, healthy_reward, terminate_when_unhealthy,
healthy_state_range, healthy_z_range, healthy_angle_range, reset_noise_scale,
exclude_current_positions_from_observation)
def step(self, action):
self.current_step += 1
self.do_simulation(action, self.frame_skip)
height_after = self.get_body_com("torso")[2]
site_pos_after = self.sim.data.site_xpos[self.model.site_name2id('foot_site')].copy()
self.max_height = max(height_after, self.max_height)
ctrl_cost = self.control_cost(action)
costs = ctrl_cost
done = False
rewards = 0
if self.current_step >= self.max_episode_steps:
hight_goal_distance = -10*np.linalg.norm(self.max_height - self.goal) if self.context else self.max_height
healthy_reward = 0 if self.context else self.healthy_reward * 2 # self.current_step
height_reward = self._forward_reward_weight * hight_goal_distance # maybe move reward calculation into if structure and define two different _forward_reward_weight variables for context and episodic seperatley
rewards = height_reward + healthy_reward
# else:
# # penalty for wrong start direction of first two joints; not needed, could be removed
# rewards = ((action[:2] > 0) * self.penalty).sum() if self.current_step < 10 else 0
observation = self._get_obs()
reward = rewards - costs
# info = {
# 'height' : height_after,
# 'max_height': self.max_height,
# 'goal' : self.goal
# }
info = {
'height': height_after,
'x_pos': site_pos_after,
'max_height': self.max_height,
'height_rew': self.max_height,
'healthy_reward': self.healthy_reward * 2
}
return observation, reward, done, info
def _get_obs(self):
return np.append(super()._get_obs(), self.goal)
def reset(self):
self.goal = np.random.uniform(1.4, 2.16, 1) # 1.3 2.3
self.max_height = 0
self.current_step = 0
return super().reset()
# overwrite reset_model to make it deterministic
def reset_model(self):
qpos = self.init_qpos # + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nq)
qvel = self.init_qvel # + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nv)
self.set_state(qpos, qvel)
observation = self._get_obs()
self.has_left_floor = False
self.contact_with_floor = False
self.init_floor_contact = False
self.contact_dist = None
return observation
def _contact_checker(self, id_1, id_2):
for coni in range(0, self.sim.data.ncon):
con = self.sim.data.contact[coni]
collision = con.geom1 == id_1 and con.geom2 == id_2
collision_trans = con.geom1 == id_2 and con.geom2 == id_1
if collision or collision_trans:
return True
return False
class ALRHopperXYJumpEnv(ALRHopperJumpEnv):
def step(self, action):
self._floor_geom_id = self.model.geom_name2id('floor')
self._foot_geom_id = self.model.geom_name2id('foot_geom')
self.current_step += 1
self.do_simulation(action, self.frame_skip)
height_after = self.get_body_com("torso")[2]
site_pos_after = self.sim.data.site_xpos[self.model.site_name2id('foot_site')].copy()
self.max_height = max(height_after, self.max_height)
# floor_contact = self._contact_checker(self._floor_geom_id, self._foot_geom_id) if not self.contact_with_floor else False
# self.init_floor_contact = floor_contact if not self.init_floor_contact else self.init_floor_contact
# self.has_left_floor = not floor_contact if self.init_floor_contact and not self.has_left_floor else self.has_left_floor
# self.contact_with_floor = floor_contact if not self.contact_with_floor and self.has_left_floor else self.contact_with_floor
floor_contact = self._contact_checker(self._floor_geom_id,
self._foot_geom_id) if not self.contact_with_floor else False
if not self.init_floor_contact:
self.init_floor_contact = floor_contact
if self.init_floor_contact and not self.has_left_floor:
self.has_left_floor = not floor_contact
if not self.contact_with_floor and self.has_left_floor:
self.contact_with_floor = floor_contact
if self.contact_dist is None and self.contact_with_floor:
self.contact_dist = np.linalg.norm(self.sim.data.site_xpos[self.model.site_name2id('foot_site')]
- np.array([self.goal, 0, 0], dtype=object))[0]
ctrl_cost = self.control_cost(action)
costs = ctrl_cost
done = False
goal_dist = np.atleast_1d(np.linalg.norm(site_pos_after - np.array([self.goal, 0, 0], dtype=object)))[0]
rewards = 0
if self.current_step >= self.max_episode_steps:
# healthy_reward = 0 if self.context else self.healthy_reward * self.current_step
healthy_reward = self.healthy_reward * 2 #* self.current_step
contact_dist = self.contact_dist if self.contact_dist is not None else 5
dist_reward = self._forward_reward_weight * (-3*goal_dist + 10*self.max_height - 2*contact_dist)
rewards = dist_reward + healthy_reward
observation = self._get_obs()
reward = rewards - costs
info = {
'height': height_after,
'x_pos': site_pos_after,
'max_height': self.max_height,
'goal': self.goal,
'goal_dist': goal_dist,
'height_rew': self.max_height,
'healthy_reward': self.healthy_reward * 2
}
return observation, reward, done, info
def reset_model(self):
self.init_qpos[1] = 1.5
self._floor_geom_id = self.model.geom_name2id('floor')
self._foot_geom_id = self.model.geom_name2id('foot_geom')
noise_low = -np.zeros(self.model.nq)
noise_low[3] = -0.5
noise_low[4] = -0.2
noise_low[5] = 0
noise_high = np.zeros(self.model.nq)
noise_high[3] = 0
noise_high[4] = 0
noise_high[5] = 0.785
rnd_vec = self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nq)
qpos = self.init_qpos + rnd_vec
qvel = self.init_qvel
self.set_state(qpos, qvel)
observation = self._get_obs()
self.has_left_floor = False
self.contact_with_floor = False
self.init_floor_contact = False
self.contact_dist = None
return observation
def reset(self):
super().reset()
# self.goal = np.random.uniform(-1.5, 1.5, 1)
# self.goal = np.random.uniform(0, 1.5, 1)
self.goal = self.np_random.uniform(0, 1.5, 1)
# self.goal = np.array([1.5])
self.sim.model.body_pos[self.sim.model.body_name2id('goal_site_body')] = np.array([self.goal, 0, 0], dtype=object)
return self.reset_model()
class ALRHopperXYJumpEnvStepBased(ALRHopperXYJumpEnv):
def step(self, action):
self._floor_geom_id = self.model.geom_name2id('floor')
self._foot_geom_id = self.model.geom_name2id('foot_geom')
self.current_step += 1
self.do_simulation(action, self.frame_skip)
height_after = self.get_body_com("torso")[2]
site_pos_after = self.sim.data.site_xpos[self.model.site_name2id('foot_site')].copy()
self.max_height = max(height_after, self.max_height)
ctrl_cost = self.control_cost(action)
healthy_reward = self.healthy_reward * 2
height_reward = 10*height_after
goal_dist = np.atleast_1d(np.linalg.norm(site_pos_after - np.array([self.goal, 0, 0], dtype=object)))[0]
goal_dist_reward = -3*goal_dist
dist_reward = self._forward_reward_weight * (goal_dist_reward + height_reward)
reward = -ctrl_cost + healthy_reward + dist_reward
done = False
observation = self._get_obs()
info = {
'height': height_after,
'x_pos': site_pos_after,
'max_height': self.max_height,
'goal': self.goal,
'goal_dist': goal_dist,
'dist_rew': dist_reward,
'height_rew': height_reward,
'healthy_reward': healthy_reward,
'ctrl_reward': -ctrl_cost
}
return observation, reward, done, info
class ALRHopperJumpRndmPosEnv(ALRHopperJumpEnv):
def __init__(self, max_episode_steps=250):
super(ALRHopperJumpRndmPosEnv, self).__init__(exclude_current_positions_from_observation=False,
reset_noise_scale=5e-1,
max_episode_steps=max_episode_steps)
def reset_model(self):
self._floor_geom_id = self.model.geom_name2id('floor')
self._foot_geom_id = self.model.geom_name2id('foot_geom')
noise_low = -np.ones(self.model.nq)*self._reset_noise_scale
noise_low[1] = 0
noise_low[2] = 0
noise_low[3] = -0.2
noise_low[4] = -0.2
noise_low[5] = -0.1
noise_high = np.ones(self.model.nq)*self._reset_noise_scale
noise_high[1] = 0
noise_high[2] = 0
noise_high[3] = 0
noise_high[4] = 0
noise_high[5] = 0.1
rnd_vec = self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nq)
# rnd_vec[2] *= 0.05 # the angle around the y axis shouldn't be too high as the agent then falls down quickly and
# can not recover
# rnd_vec[1] = np.clip(rnd_vec[1], 0, 0.3)
qpos = self.init_qpos + rnd_vec
qvel = self.init_qvel
self.set_state(qpos, qvel)
observation = self._get_obs()
return observation
def step(self, action):
self.current_step += 1
self.do_simulation(action, self.frame_skip)
self.contact_with_floor = self._contact_checker(self._floor_geom_id, self._foot_geom_id) if not \
self.contact_with_floor else True
height_after = self.get_body_com("torso")[2]
self.max_height = max(height_after, self.max_height) if self.contact_with_floor else 0
ctrl_cost = self.control_cost(action)
costs = ctrl_cost
done = False
if self.current_step >= self.max_episode_steps:
healthy_reward = 0
height_reward = self._forward_reward_weight * self.max_height # maybe move reward calculation into if structure and define two different _forward_reward_weight variables for context and episodic seperatley
rewards = height_reward + healthy_reward
else:
# penalty for wrong start direction of first two joints; not needed, could be removed
rewards = ((action[:2] > 0) * self.penalty).sum() if self.current_step < 10 else 0
observation = self._get_obs()
reward = rewards - costs
info = {
'height': height_after,
'max_height': self.max_height,
'goal': self.goal
}
return observation, reward, done, info
if __name__ == '__main__':
render_mode = "human" # "human" or "partial" or "final"
# env = ALRHopperJumpEnv()
# env = ALRHopperXYJumpEnv()
env = ALRHopperXYJumpEnvStepBased()
# env = ALRHopperJumpRndmPosEnv()
obs = env.reset()
for k in range(10):
obs = env.reset()
print('observation :', obs[:])
for i in range(200):
# objective.load_result("/tmp/cma")
# test with random actions
ac = env.action_space.sample()
obs, rew, d, info = env.step(ac)
# if i % 10 == 0:
# env.render(mode=render_mode)
env.render(mode=render_mode)
if d:
print('After ', i, ' steps, done: ', d)
env.reset()
env.close()