fancy_gym/fancy_gym/envs/mujoco/table_tennis/mp_wrapper.py
2023-07-03 17:19:41 +02:00

55 lines
2.1 KiB
Python

from typing import Union, Tuple
import numpy as np
from fancy_gym.black_box.raw_interface_wrapper import RawInterfaceWrapper
from fancy_gym.envs.mujoco.table_tennis.table_tennis_utils import jnt_pos_low, jnt_pos_high, delay_bound, tau_bound
class TT_MPWrapper(RawInterfaceWrapper):
# Random x goal + random init pos
@property
def context_mask(self):
return np.hstack([
[False] * 7, # joints position
[False] * 7, # joints velocity
[True] * 2, # position ball x, y
[False] * 1, # position ball z
#[True] * 3, # velocity ball x, y, z
[True] * 2, # target landing position
# [True] * 1, # time
])
@property
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
return self.data.qpos[:7].copy()
@property
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
return self.data.qvel[:7].copy()
def preprocessing_and_validity_callback(self, action: np.ndarray, pos_traj: np.ndarray, vel_traj: np.ndarray,
tau_bound: list, delay_bound:list):
return self.check_traj_validity(action, pos_traj, vel_traj, tau_bound, delay_bound)
def set_episode_arguments(self, action, pos_traj, vel_traj):
return pos_traj, vel_traj
def invalid_traj_callback(self, action: np.ndarray, pos_traj: np.ndarray, vel_traj: np.ndarray,
return_contextual_obs: bool, tau_bound:list, delay_bound:list) -> Tuple[np.ndarray, float, bool, dict]:
return self.get_invalid_traj_step_return(action, pos_traj, return_contextual_obs, tau_bound, delay_bound)
class TTVelObs_MPWrapper(TT_MPWrapper):
@property
def context_mask(self):
return np.hstack([
[False] * 7, # joints position
[False] * 7, # joints velocity
[True] * 2, # position ball x, y
[False] * 1, # position ball z
[True] * 3, # velocity ball x, y, z
[True] * 2, # target landing position
# [True] * 1, # time
])