fancy_gym/alr_envs/classic_control/hole_reacher.py
2021-05-18 15:27:08 +02:00

326 lines
12 KiB
Python

from typing import Union
import gym
import matplotlib.pyplot as plt
import numpy as np
from gym.utils import seeding
from matplotlib import patches
from alr_envs.classic_control.utils import check_self_collision
from alr_envs.utils.mps.mp_environments import MPEnv
class HoleReacherEnv(MPEnv):
def __init__(self, n_links: int, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
hole_width: float = 1., random_start: bool = False, allow_self_collision: bool = False,
allow_wall_collision: bool = False, collision_penalty: float = 1000):
self.n_links = n_links
self.link_lengths = np.ones((n_links, 1))
self.random_start = random_start
# provided initial parameters
self._hole_x = hole_x # x-position of center of hole
self._hole_width = hole_width # width of hole
self._hole_depth = hole_depth # depth of hole
# temp container for current env state
self._tmp_hole_x = None
self._tmp_hole_width = None
self._tmp_hole_depth = None
self._goal = None # x-y coordinates for reaching the center at the bottom of the hole
# collision
self.allow_self_collision = allow_self_collision
self.allow_wall_collision = allow_wall_collision
self.collision_penalty = collision_penalty
# state
self._joints = None
self._joint_angles = None
self._angle_velocity = None
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
self._start_vel = np.zeros(self.n_links)
self.dt = 0.01
action_bound = np.pi * np.ones((self.n_links,))
state_bound = np.hstack([
[np.pi] * self.n_links, # cos
[np.pi] * self.n_links, # sin
[np.inf] * self.n_links, # velocity
[np.inf], # hole width
# [np.inf], # hole depth
[np.inf] * 2, # x-y coordinates of target distance
[np.inf] # env steps, because reward start after n steps TODO: Maybe
])
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
# containers for plotting
self.metadata = {'render.modes': ["human", "partial"]}
self.fig = None
self._steps = 0
self.seed()
def step(self, action: np.ndarray):
"""
A single step with an action in joint velocity space
"""
self._angle_velocity = action
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
self._update_joints()
acc = (action - self._angle_velocity) / self.dt
reward, info = self._get_reward(acc)
info.update({"is_collided": self._is_collided})
self._steps += 1
done = self._is_collided
return self._get_obs().copy(), reward, done, info
def reset(self):
if self.random_start:
# Maybe change more than dirst seed
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
self._start_pos = self._joint_angles.copy()
else:
self._joint_angles = self._start_pos
self._generate_hole()
self._set_patches()
self._angle_velocity = self._start_vel
self._joints = np.zeros((self.n_links + 1, 2))
self._update_joints()
self._steps = 0
return self._get_obs().copy()
def _generate_hole(self):
self._tmp_hole_x = self.np_random.uniform(0.5, 3.5, 1) if self._hole_x is None else np.copy(self._hole_x)
self._tmp_hole_width = self.np_random.uniform(0.5, 0.1, 1) if self._hole_width is None else np.copy(
self._hole_width)
# TODO we do not want this right now.
self._tmp_hole_depth = self.np_random.uniform(1, 1, 1) if self._hole_depth is None else np.copy(
self._hole_depth)
self._goal = np.hstack([self._tmp_hole_x, -self._tmp_hole_depth])
def _update_joints(self):
"""
update _joints to get new end effector position. The other links are only required for rendering.
Returns:
"""
line_points_in_taskspace = self._get_forward_kinematics(num_points_per_link=20)
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
self_collision = False
wall_collision = False
if not self.allow_self_collision:
self_collision = check_self_collision(line_points_in_taskspace)
if np.any(np.abs(self._joint_angles) > np.pi) and not self.allow_self_collision:
self_collision = True
if not self.allow_wall_collision:
wall_collision = self._check_wall_collision(line_points_in_taskspace)
self._is_collided = self_collision or wall_collision
def _get_reward(self, acc: np.ndarray):
reward = 0
# success = False
if self._steps == 199 or self._is_collided:
# return reward only in last time step
# Episode also terminates when colliding, hence return reward
dist = np.linalg.norm(self.end_effector - self._goal)
# success = dist < 0.005 and not self._is_collided
reward = - dist ** 2 - self.collision_penalty * self._is_collided
reward -= 5e-8 * np.sum(acc ** 2)
# info = {"is_success": success}
return reward, {} # info
def _get_obs(self):
theta = self._joint_angles
return np.hstack([
np.cos(theta),
np.sin(theta),
self._angle_velocity,
self._tmp_hole_width,
# self._tmp_hole_depth,
self.end_effector - self._goal,
self._steps
])
def _get_forward_kinematics(self, num_points_per_link=1):
theta = self._joint_angles[:, None]
intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
accumulated_theta = np.cumsum(theta, axis=0)
end_effector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
end_effector[0, :, 0] = x[0, :]
end_effector[0, :, 1] = y[0, :]
for i in range(1, self.n_links):
end_effector[i, :, 0] = x[i, :] + end_effector[i - 1, -1, 0]
end_effector[i, :, 1] = y[i, :] + end_effector[i - 1, -1, 1]
return np.squeeze(end_effector + self._joints[0, :])
def _check_wall_collision(self, line_points):
# all points that are before the hole in x
r, c = np.where(line_points[:, :, 0] < (self._tmp_hole_x - self._tmp_hole_width / 2))
# check if any of those points are below surface
nr_line_points_below_surface_before_hole = np.sum(line_points[r, c, 1] < 0)
if nr_line_points_below_surface_before_hole > 0:
return True
# all points that are after the hole in x
r, c = np.where(line_points[:, :, 0] > (self._tmp_hole_x + self._tmp_hole_width / 2))
# check if any of those points are below surface
nr_line_points_below_surface_after_hole = np.sum(line_points[r, c, 1] < 0)
if nr_line_points_below_surface_after_hole > 0:
return True
# all points that are above the hole
r, c = np.where((line_points[:, :, 0] > (self._tmp_hole_x - self._tmp_hole_width / 2)) & (
line_points[:, :, 0] < (self._tmp_hole_x + self._tmp_hole_width / 2)))
# check if any of those points are below surface
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self._tmp_hole_depth)
if nr_line_points_below_surface_in_hole > 0:
return True
return False
def render(self, mode='human'):
if self.fig is None:
# Create base figure once on the beginning. Afterwards only update
plt.ion()
self.fig = plt.figure()
ax = self.fig.add_subplot(1, 1, 1)
# limits
lim = np.sum(self.link_lengths) + 0.5
ax.set_xlim([-lim, lim])
ax.set_ylim([-1.1, lim])
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
self._set_patches()
self.fig.show()
self.fig.gca().set_title(
f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
if mode == "human":
# arm
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
self.fig.canvas.draw()
self.fig.canvas.flush_events()
elif mode == "partial":
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k',
alpha=self._steps / 200)
def _set_patches(self):
if self.fig is not None:
self.fig.gca().patches = []
left_block = patches.Rectangle((-self.n_links, -self._tmp_hole_depth),
self.n_links + self._tmp_hole_x - self._tmp_hole_width / 2,
self._tmp_hole_depth,
fill=True, edgecolor='k', facecolor='k')
right_block = patches.Rectangle((self._tmp_hole_x + self._tmp_hole_width / 2, -self._tmp_hole_depth),
self.n_links - self._tmp_hole_x + self._tmp_hole_width / 2,
self._tmp_hole_depth,
fill=True, edgecolor='k', facecolor='k')
hole_floor = patches.Rectangle((self._tmp_hole_x - self._tmp_hole_width / 2, -self._tmp_hole_depth),
self._tmp_hole_width,
1 - self._tmp_hole_depth,
fill=True, edgecolor='k', facecolor='k')
# Add the patch to the Axes
self.fig.gca().add_patch(left_block)
self.fig.gca().add_patch(right_block)
self.fig.gca().add_patch(hole_floor)
@property
def active_obs(self):
return np.hstack([
[self.random_start] * self.n_links, # cos
[self.random_start] * self.n_links, # sin
[self.random_start] * self.n_links, # velocity
[self._hole_width is None], # hole width
# [self._hole_depth is None], # hole depth
[True] * 2, # x-y coordinates of target distance
[False] # env steps
])
@property
def start_pos(self) -> Union[float, int, np.ndarray]:
return self._start_pos
@property
def goal_pos(self) -> Union[float, int, np.ndarray]:
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
@property
def end_effector(self):
return self._joints[self.n_links].T
def close(self):
if self.fig is not None:
plt.close(self.fig)
if __name__ == '__main__':
nl = 5
render_mode = "human" # "human" or "partial" or "final"
env = HoleReacherEnv(n_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=None,
hole_depth=1, hole_x=None)
obs = env.reset()
for i in range(200):
# objective.load_result("/tmp/cma")
# test with random actions
ac = 2 * env.action_space.sample()
obs, rew, d, info = env.step(ac)
env.render(mode=render_mode)
print(rew)
if d:
env.reset()
env.close()