168 lines
5.6 KiB
Python
168 lines
5.6 KiB
Python
from gym import utils
|
|
import os
|
|
import numpy as np
|
|
from gym.envs.mujoco import MujocoEnv
|
|
|
|
|
|
class ALRBeerpongEnv(MujocoEnv, utils.EzPickle):
|
|
def __init__(self, n_substeps=4, apply_gravity_comp=True, reward_function=None):
|
|
utils.EzPickle.__init__(**locals())
|
|
|
|
self._steps = 0
|
|
|
|
self.xml_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets",
|
|
"beerpong" + ".xml")
|
|
|
|
self.start_pos = np.array([0.0, 1.35, 0.0, 1.18, 0.0, -0.786, -1.59])
|
|
self.start_vel = np.zeros(7)
|
|
|
|
self._q_pos = []
|
|
self._q_vel = []
|
|
# self.weight_matrix_scale = 50
|
|
self.max_ctrl = np.array([150., 125., 40., 60., 5., 5., 2.])
|
|
self.p_gains = 1 / self.max_ctrl * np.array([200, 300, 100, 100, 10, 10, 2.5])
|
|
self.d_gains = 1 / self.max_ctrl * np.array([7, 15, 5, 2.5, 0.3, 0.3, 0.05])
|
|
|
|
self.j_min = np.array([-2.6, -1.985, -2.8, -0.9, -4.55, -1.5707, -2.7])
|
|
self.j_max = np.array([2.6, 1.985, 2.8, 3.14159, 1.25, 1.5707, 2.7])
|
|
|
|
self.context = None
|
|
|
|
MujocoEnv.__init__(self, model_path=self.xml_path, frame_skip=n_substeps)
|
|
|
|
# alr_mujoco_env.AlrMujocoEnv.__init__(self,
|
|
# self.xml_path,
|
|
# apply_gravity_comp=apply_gravity_comp,
|
|
# n_substeps=n_substeps)
|
|
|
|
self.sim_time = 8 # seconds
|
|
self.sim_steps = int(self.sim_time / self.dt)
|
|
if reward_function is None:
|
|
from alr_envs.alr.mujoco.beerpong.beerpong_reward_simple import BeerpongReward
|
|
reward_function = BeerpongReward
|
|
self.reward_function = reward_function(self.sim, self.sim_steps)
|
|
self.cup_robot_id = self.sim.model._site_name2id["cup_robot_final"]
|
|
self.ball_id = self.sim.model._body_name2id["ball"]
|
|
self.cup_table_id = self.sim.model._body_name2id["cup_table"]
|
|
# self.bounce_table_id = self.sim.model._body_name2id["bounce_table"]
|
|
|
|
@property
|
|
def current_pos(self):
|
|
return self.sim.data.qpos[0:7].copy()
|
|
|
|
@property
|
|
def current_vel(self):
|
|
return self.sim.data.qvel[0:7].copy()
|
|
|
|
def configure(self, context):
|
|
if context is None:
|
|
context = np.array([0, -2, 0.840])
|
|
self.context = context
|
|
self.reward_function.reset(context)
|
|
|
|
def reset_model(self):
|
|
init_pos_all = self.init_qpos.copy()
|
|
init_pos_robot = self.start_pos
|
|
init_vel = np.zeros_like(init_pos_all)
|
|
|
|
self._steps = 0
|
|
self._q_pos = []
|
|
self._q_vel = []
|
|
|
|
start_pos = init_pos_all
|
|
start_pos[0:7] = init_pos_robot
|
|
# start_pos[7:] = np.copy(self.sim.data.site_xpos[self.cup_robot_id, :]) + np.array([0., 0.0, 0.05])
|
|
|
|
self.set_state(start_pos, init_vel)
|
|
|
|
ball_pos = np.copy(self.sim.data.site_xpos[self.cup_robot_id, :]) + np.array([0., 0.0, 0.05])
|
|
self.sim.model.body_pos[self.ball_id] = ball_pos.copy()
|
|
self.sim.model.body_pos[self.cup_table_id] = self.context.copy()
|
|
# self.sim.model.body_pos[self.bounce_table_id] = self.context.copy()
|
|
|
|
self.sim.forward()
|
|
|
|
return self._get_obs()
|
|
|
|
def step(self, a):
|
|
reward_dist = 0.0
|
|
angular_vel = 0.0
|
|
reward_ctrl = - np.square(a).sum()
|
|
action_cost = np.sum(np.square(a))
|
|
|
|
crash = self.do_simulation(a)
|
|
joint_cons_viol = self.check_traj_in_joint_limits()
|
|
|
|
self._q_pos.append(self.sim.data.qpos[0:7].ravel().copy())
|
|
self._q_vel.append(self.sim.data.qvel[0:7].ravel().copy())
|
|
|
|
ob = self._get_obs()
|
|
|
|
if not crash and not joint_cons_viol:
|
|
reward, success, stop_sim = self.reward_function.compute_reward(a, self.sim, self._steps)
|
|
done = success or self._steps == self.sim_steps - 1 or stop_sim
|
|
self._steps += 1
|
|
else:
|
|
reward = -10 - 1e-2 * action_cost
|
|
success = False
|
|
done = True
|
|
return ob, reward, done, dict(reward_dist=reward_dist,
|
|
reward_ctrl=reward_ctrl,
|
|
velocity=angular_vel,
|
|
traj=self._q_pos, is_success=success,
|
|
is_collided=crash or joint_cons_viol)
|
|
|
|
def check_traj_in_joint_limits(self):
|
|
return any(self.current_pos > self.j_max) or any(self.current_pos < self.j_min)
|
|
|
|
def extend_des_pos(self, des_pos):
|
|
des_pos_full = self.start_pos.copy()
|
|
des_pos_full[1] = des_pos[0]
|
|
des_pos_full[3] = des_pos[1]
|
|
des_pos_full[5] = des_pos[2]
|
|
return des_pos_full
|
|
|
|
def extend_des_vel(self, des_vel):
|
|
des_vel_full = self.start_vel.copy()
|
|
des_vel_full[1] = des_vel[0]
|
|
des_vel_full[3] = des_vel[1]
|
|
des_vel_full[5] = des_vel[2]
|
|
return des_vel_full
|
|
|
|
def _get_obs(self):
|
|
theta = self.sim.data.qpos.flat[:7]
|
|
return np.concatenate([
|
|
np.cos(theta),
|
|
np.sin(theta),
|
|
# self.get_body_com("target"), # only return target to make problem harder
|
|
[self._steps],
|
|
])
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
env = ALRBeerpongEnv()
|
|
ctxt = np.array([0, -2, 0.840]) # initial
|
|
|
|
env.configure(ctxt)
|
|
env.reset()
|
|
env.render()
|
|
for i in range(16000):
|
|
# test with random actions
|
|
ac = 0.0 * env.action_space.sample()[0:7]
|
|
ac[1] = -0.01
|
|
ac[3] = - 0.01
|
|
ac[5] = -0.01
|
|
# ac = env.start_pos
|
|
# ac[0] += np.pi/2
|
|
obs, rew, d, info = env.step(ac)
|
|
env.render()
|
|
|
|
print(rew)
|
|
|
|
if d:
|
|
break
|
|
|
|
env.close()
|
|
|