fancy_gym/alr_envs/utils/mps/mp_wrapper.py
Maximilian Huettenrauch 8075655301 update
2021-06-22 10:27:25 +02:00

114 lines
3.9 KiB
Python

from abc import ABC, abstractmethod
from collections import defaultdict
import gym
import numpy as np
from alr_envs.utils.mps.mp_environments import AlrEnv
from alr_envs.utils.policies import get_policy_class
class MPWrapper(gym.Wrapper, ABC):
def __init__(self, env: AlrEnv, num_dof: int, dt: float, duration: float = 1, post_traj_time: float = 0.,
policy_type: str = None, weights_scale: float = 1., render_mode: str = None, **mp_kwargs):
super().__init__(env)
# adjust observation space to reduce version
obs_sp = self.env.observation_space
self.observation_space = gym.spaces.Box(low=obs_sp.low[self.env.active_obs],
high=obs_sp.high[self.env.active_obs],
dtype=obs_sp.dtype)
assert dt is not None # this should never happen as MPWrapper is a base class
self.post_traj_steps = int(post_traj_time / dt)
self.mp = self.initialize_mp(num_dof, duration, dt, **mp_kwargs)
self.weights_scale = weights_scale
policy_class = get_policy_class(policy_type)
self.policy = policy_class(env)
# rendering
self.render_mode = render_mode
self.render_kwargs = {}
# TODO: @Max I think this should not be in this class, this functionality should be part of your sampler.
def __call__(self, params, contexts=None):
"""
Can be used to provide a batch of parameter sets
"""
params = np.atleast_2d(params)
obs = []
rewards = []
dones = []
infos = []
# for p, c in zip(params, contexts):
for p in params:
# self.configure(c)
ob, reward, done, info = self.step(p)
obs.append(ob)
rewards.append(reward)
dones.append(done)
infos.append(info)
return obs, np.array(rewards), dones, infos
def reset(self):
return self.env.reset()[self.env.active_obs]
def step(self, action: np.ndarray):
""" This function generates a trajectory based on a DMP and then does the usual loop over reset and step"""
trajectory, velocity = self.mp_rollout(action)
if self.post_traj_steps > 0:
trajectory = np.vstack([trajectory, np.tile(trajectory[-1, :], [self.post_traj_steps, 1])])
velocity = np.vstack([velocity, np.zeros(shape=(self.post_traj_steps, self.mp.n_dof))])
self._trajectory = trajectory
# self._velocity = velocity
rewards = 0
infos = defaultdict(list)
# create random obs as the reset function is called externally
obs = self.env.observation_space.sample()
for t, pos_vel in enumerate(zip(trajectory, velocity)):
ac = self.policy.get_action(pos_vel[0], pos_vel[1])
obs, rew, done, info = self.env.step(ac)
rewards += rew
# TODO return all dicts?
[infos[k].append(v) for k, v in info.items()]
if self.render_mode:
self.env.render(mode=self.render_mode, **self.render_kwargs)
if done:
break
done = True
return obs[self.env.active_obs], rewards, done, infos
def render(self, mode='human', **kwargs):
"""Only set render options here, such that they can be used during the rollout.
This only needs to be called once"""
self.render_mode = mode
self.render_kwargs = kwargs
@abstractmethod
def mp_rollout(self, action):
"""
Generate trajectory and velocity based on the MP
Returns:
trajectory/positions, velocity
"""
raise NotImplementedError()
@abstractmethod
def initialize_mp(self, num_dof: int, duration: float, dt: float, **kwargs):
"""
Create respective instance of MP
Returns:
MP instance
"""
raise NotImplementedError