fancy_gym/example.py
Maximilian Huettenrauch 3876478b96 updates
2021-06-16 10:29:38 +02:00

116 lines
3.6 KiB
Python

from collections import defaultdict
import gym
import numpy as np
from alr_envs.utils.mp_env_async_sampler import AlrMpEnvSampler, AlrContextualMpEnvSampler, DummyDist
def example_mujoco():
env = gym.make('alr_envs:ALRReacher-v0')
rewards = 0
obs = env.reset()
# number of environment steps
for i in range(10000):
obs, reward, done, info = env.step(env.action_space.sample())
rewards += reward
if i % 1 == 0:
env.render()
if done:
print(rewards)
rewards = 0
obs = env.reset()
def example_mp(env_name="alr_envs:HoleReacherDMP-v0"):
# env = gym.make("alr_envs:ViaPointReacherDMP-v0")
env = gym.make(env_name)
rewards = 0
# env.render(mode=None)
obs = env.reset()
# number of samples/full trajectories (multiple environment steps)
for i in range(10):
obs, reward, done, info = env.step(env.action_space.sample())
rewards += reward
if i % 1 == 0:
# render full DMP trajectory
# render can only be called once in the beginning as well. That would render every trajectory
# Calling it after every trajectory allows to modify the mode. mode=None, disables rendering.
env.render(mode="human")
if done:
print(rewards)
rewards = 0
obs = env.reset()
def example_async(env_id="alr_envs:HoleReacherDMP-v0", n_cpu=4, seed=int('533D', 16)):
def make_env(env_id, seed, rank):
env = gym.make(env_id)
env.seed(seed + rank)
return lambda: env
def sample(env: gym.vector.VectorEnv, n_samples=100):
# for plotting
rewards = np.zeros(n_cpu)
# this would generate more samples than requested if n_samples % num_envs != 0
repeat = int(np.ceil(n_samples / env.num_envs))
vals = defaultdict(list)
for i in range(repeat):
obs, reward, done, info = envs.step(envs.action_space.sample())
vals['obs'].append(obs)
vals['reward'].append(reward)
vals['done'].append(done)
vals['info'].append(info)
rewards += reward
if np.any(done):
print(rewards[done])
rewards[done] = 0
# do not return values above threshold
return (*map(lambda v: np.stack(v)[:n_samples], vals.values()),)
envs = gym.vector.AsyncVectorEnv([make_env(env_id, seed, i) for i in range(n_cpu)])
obs = envs.reset()
print(sample(envs, 16))
def example_async_sampler(env_name="alr_envs:HoleReacherDetPMP-v1", n_cpu=4):
n_samples = 10
sampler = AlrMpEnvSampler(env_name, num_envs=n_cpu)
dim = sampler.env.action_space.spaces[0].shape[0]
thetas = np.random.randn(n_samples, dim) # usually form a search distribution
_, rewards, __, ___ = sampler(thetas)
print(rewards)
def example_async_contextual_sampler(env_name="alr_envs:SimpleReacherDMP-v1", n_cpu=4):
sampler = AlrContextualMpEnvSampler(env_name, num_envs=n_cpu)
dim = sampler.env.action_space.spaces[0].shape[0]
dist = DummyDist(dim) # needs a sample function
n_samples = 10
new_samples, new_contexts, obs, new_rewards, done, infos = sampler(dist, n_samples)
print(new_rewards)
if __name__ == '__main__':
# example_mujoco()
# example_mp("alr_envs:SimpleReacherDMP-v1")
# example_async("alr_envs:LongSimpleReacherDMP-v0", 4)
# example_async_contextual_sampler()
# env = gym.make("alr_envs:HoleReacherDetPMP-v1")
env_name = "alr_envs:ALRBallInACupSimpleDetPMP-v0"
example_async_sampler(env_name)
# example_mp(env_name)