fancy_gym/alr_envs/utils/dmc2gym_wrapper.py

171 lines
6.0 KiB
Python

# Adopted from: https://github.com/denisyarats/dmc2gym/blob/master/dmc2gym/wrappers.py
# License: MIT
# Copyright (c) 2020 Denis Yarats
from typing import Any, Dict, Tuple
import numpy as np
from dm_control import manipulation, suite
from dm_env import specs
from gym import core, spaces
def _spec_to_box(spec):
def extract_min_max(s):
assert s.dtype == np.float64 or s.dtype == np.float32, f"Only float64 and float32 types are allowed, instead {s.dtype} was found"
dim = int(np.prod(s.shape))
if type(s) == specs.Array:
bound = np.inf * np.ones(dim, dtype=np.float32)
return -bound, bound
elif type(s) == specs.BoundedArray:
zeros = np.zeros(dim, dtype=np.float32)
return s.minimum + zeros, s.maximum + zeros
mins, maxs = [], []
for s in spec:
mn, mx = extract_min_max(s)
mins.append(mn)
maxs.append(mx)
low = np.concatenate(mins, axis=0)
high = np.concatenate(maxs, axis=0)
assert low.shape == high.shape
return spaces.Box(low, high, dtype=np.float32)
def _flatten_obs(obs):
obs_pieces = []
for v in obs.values():
flat = np.array([v]) if np.isscalar(v) else v.ravel()
obs_pieces.append(flat)
return np.concatenate(obs_pieces, axis=0)
class DMCWrapper(core.Env):
def __init__(
self,
domain_name,
task_name,
task_kwargs={},
visualize_reward=True,
from_pixels=False,
height=84,
width=84,
camera_id=0,
frame_skip=1,
environment_kwargs=None,
channels_first=True
):
assert 'random' in task_kwargs, 'please specify a seed, for deterministic behaviour'
self._from_pixels = from_pixels
self._height = height
self._width = width
self._camera_id = camera_id
self._frame_skip = frame_skip
self._channels_first = channels_first
# create task
if domain_name == "manipulation":
assert not from_pixels, \
"TODO: Vision interface for manipulation is different to suite and needs to be implemented"
self._env = manipulation.load(environment_name=task_name, seed=task_kwargs['random'])
else:
self._env = suite.load(domain_name=domain_name, task_name=task_name, task_kwargs=task_kwargs,
visualize_reward=visualize_reward, environment_kwargs=environment_kwargs)
# action and observation space
self._action_space = _spec_to_box([self._env.action_spec()])
self._observation_space = _spec_to_box(self._env.observation_spec().values())
self._last_observation = None
self.viewer = None
# set seed
self.seed(seed=task_kwargs.get('random', 1))
def __getattr__(self, name):
"""Delegate attribute access to underlying environment."""
return getattr(self._env, name)
def _get_obs(self, time_step):
if self._from_pixels:
obs = self.render(
mode="rgb_array",
height=self._height,
width=self._width,
camera_id=self._camera_id
)
if self._channels_first:
obs = obs.transpose(2, 0, 1).copy()
else:
obs = _flatten_obs(time_step.observation)
return obs
@property
def observation_space(self):
return self._observation_space
@property
def action_space(self):
return self._action_space
def seed(self, seed=None):
self._action_space.seed(seed)
self._observation_space.seed(seed)
def step(self, action) -> Tuple[np.ndarray, float, bool, Dict[str, Any]]:
assert self._action_space.contains(action)
reward = 0
extra = {'internal_state': self._env.physics.get_state().copy()}
for _ in range(self._frame_skip):
time_step = self._env.step(action)
reward += time_step.reward or 0.
done = time_step.last()
if done:
break
self._last_observation = _flatten_obs(time_step.observation)
obs = self._get_obs(time_step)
extra['discount'] = time_step.discount
return obs, reward, done, extra
def reset(self) -> np.ndarray:
time_step = self._env.reset()
self._last_observation = _flatten_obs(time_step.observation)
obs = self._get_obs(time_step)
return obs
def render(self, mode='rgb_array', height=None, width=None, camera_id=0):
if self._last_observation is None:
raise ValueError('Environment not ready to render. Call reset() first.')
# assert mode == 'rgb_array', 'only support rgb_array mode, given %s' % mode
if mode == "rgb_array":
height = height or self._height
width = width or self._width
camera_id = camera_id or self._camera_id
return self._env.physics.render(height=height, width=width, camera_id=camera_id)
elif mode == 'human':
if self.viewer is None:
# pylint: disable=import-outside-toplevel
# pylint: disable=g-import-not-at-top
from gym.envs.classic_control import rendering
self.viewer = rendering.SimpleImageViewer()
# Render max available buffer size. Larger is only possible by altering the XML.
img = self._env.physics.render(height=self._env.physics.model.vis.global_.offheight,
width=self._env.physics.model.vis.global_.offwidth)
self.viewer.imshow(img)
return self.viewer.isopen
def close(self):
super().close()
if self.viewer is not None and self.viewer.isopen:
self.viewer.close()
@property
def reward_range(self) -> Tuple[float, float]:
reward_spec = self._env.reward_spec()
if isinstance(reward_spec, specs.BoundedArray):
return reward_spec.minimum, reward_spec.maximum
return -float('inf'), float('inf')