fancy_gym/alr_envs/classic_control/hole_reacher.py
2021-05-12 09:52:25 +02:00

351 lines
13 KiB
Python

from typing import Union
import gym
import matplotlib.pyplot as plt
import numpy as np
from gym.utils import seeding
from matplotlib import patches
from alr_envs.classic_control.utils import check_self_collision
from alr_envs.utils.mps.mp_environments import MPEnv
class HoleReacher(MPEnv):
def __init__(self, n_links, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
hole_width: float = 1., random_start: bool = True, allow_self_collision: bool = False,
allow_wall_collision: bool = False, collision_penalty: bool = 1000):
self.n_links = n_links
self.link_lengths = np.ones((n_links, 1))
self.random_start = random_start
# provided initial parameters
self._hole_x = hole_x # x-position of center of hole
self._hole_width = hole_width # width of hole
self._hole_depth = hole_depth # depth of hole
# temp containers to store current setting
self._tmp_hole_x = None
self._tmp_hole_width = None
self._tmp_hole_depth = None
# collision
self.allow_self_collision = allow_self_collision
self.allow_wall_collision = allow_wall_collision
self.collision_penalty = collision_penalty
# state
self._joint_angles = None
self._angle_velocity = None
self._joints = None
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
self._start_vel = np.zeros(self.n_links)
self.dt = 0.01
# self.time_limit = 2
action_bound = np.pi * np.ones((self.n_links,))
state_bound = np.hstack([
[np.pi] * self.n_links, # cos
[np.pi] * self.n_links, # sin
[np.inf] * self.n_links, # velocity
[np.inf], # hole width
[np.inf], # hole depth
[np.inf] * 2, # x-y coordinates of target distance
[np.inf] # env steps, because reward start after n steps TODO: Maybe
])
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
plt.ion()
self.fig = None
self.seed()
@property
def corrected_obs_index(self):
return np.hstack([
[self.random_start] * self.n_links, # cos
[self.random_start] * self.n_links, # sin
[self.random_start] * self.n_links, # velocity
[self._hole_width is None], # hole width
[self._hole_depth is None], # hole width
[True] * 2, # x-y coordinates of target distance
[False] # env steps
])
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
@property
def end_effector(self):
return self._joints[self.n_links].T
def _generate_hole(self):
hole_x = self.np_random.uniform(0.5, 3.5, 1) if self._hole_x is None else np.copy(self._hole_x)
hole_width = self.np_random.uniform(0.5, 0.1, 1) if self._hole_width is None else np.copy(self._hole_width)
# TODO we do not want this right now.
hole_depth = self.np_random.uniform(1, 1, 1) if self._hole_depth is None else np.copy(self._hole_depth)
self.bottom_center_of_hole = np.hstack([hole_x, -hole_depth])
self.top_center_of_hole = np.hstack([hole_x, 0])
self.left_wall_edge = np.hstack([hole_x - hole_width / 2, 0])
self.right_wall_edge = np.hstack([hole_x + hole_width / 2, 0])
return hole_x, hole_width, hole_depth
def reset(self):
if self.random_start:
# MAybe change more than dirst seed
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
else:
self._joint_angles = self._start_pos
self._tmp_hole_x, self._tmp_hole_width, self._tmp_hole_depth = self._generate_hole()
self.set_patches()
self._angle_velocity = self._start_vel
self._joints = np.zeros((self.n_links + 1, 2))
self._update_joints()
self._steps = 0
return self._get_obs().copy()
def step(self, action: np.ndarray):
"""
a single step with an action in joint velocity space
"""
vel = action # + 0.01 * np.random.randn(self.num_links)
acc = (vel - self._angle_velocity) / self.dt
self._angle_velocity = vel
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
self._update_joints()
# rew = self._reward()
# compute reward directly in step function
success = False
reward = 0
if not self._is_collided:
# return reward only in last time step
if self._steps == 199:
dist = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
reward = - dist ** 2
success = dist < 0.005
else:
# Episode terminates when colliding, hence return reward
dist = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
reward = - dist ** 2 - self.collision_penalty
reward -= 5e-8 * np.sum(acc ** 2)
info = {"is_collided": self._is_collided, "is_success": success}
self._steps += 1
done = self._is_collided
return self._get_obs().copy(), reward, done, info
def _update_joints(self):
"""
update _joints to get new end effector position. The other links are only required for rendering.
Returns:
"""
line_points_in_taskspace = self.get_forward_kinematics(num_points_per_link=20)
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
self_collision = False
wall_collision = False
if not self.allow_self_collision:
self_collision = check_self_collision(line_points_in_taskspace)
if np.any(np.abs(self._joint_angles) > np.pi) and not self.allow_self_collision:
self_collision = True
if not self.allow_wall_collision:
wall_collision = self.check_wall_collision(line_points_in_taskspace)
self._is_collided = self_collision or wall_collision
def _get_obs(self):
theta = self._joint_angles
return np.hstack([
np.cos(theta),
np.sin(theta),
self._angle_velocity,
self._hole_width,
self._hole_depth,
self.end_effector - self.bottom_center_of_hole,
self._steps
])
def get_forward_kinematics(self, num_points_per_link=1):
theta = self._joint_angles[:, None]
intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
accumulated_theta = np.cumsum(theta, axis=0)
end_effector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
end_effector[0, :, 0] = x[0, :]
end_effector[0, :, 1] = y[0, :]
for i in range(1, self.n_links):
end_effector[i, :, 0] = x[i, :] + end_effector[i - 1, -1, 0]
end_effector[i, :, 1] = y[i, :] + end_effector[i - 1, -1, 1]
return np.squeeze(end_effector + self._joints[0, :])
def check_wall_collision(self, line_points):
# all points that are before the hole in x
r, c = np.where(line_points[:, :, 0] < (self._tmp_hole_x - self._tmp_hole_width / 2))
# check if any of those points are below surface
nr_line_points_below_surface_before_hole = np.sum(line_points[r, c, 1] < 0)
if nr_line_points_below_surface_before_hole > 0:
return True
# all points that are after the hole in x
r, c = np.where(line_points[:, :, 0] > (self._tmp_hole_x + self._tmp_hole_width / 2))
# check if any of those points are below surface
nr_line_points_below_surface_after_hole = np.sum(line_points[r, c, 1] < 0)
if nr_line_points_below_surface_after_hole > 0:
return True
# all points that are above the hole
r, c = np.where((line_points[:, :, 0] > (self._tmp_hole_x - self._tmp_hole_width / 2)) & (
line_points[:, :, 0] < (self._tmp_hole_x + self._tmp_hole_width / 2)))
# check if any of those points are below surface
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self._tmp_hole_depth)
if nr_line_points_below_surface_in_hole > 0:
return True
return False
def render(self, mode='human'):
if self.fig is None:
plt.ion()
self.fig = plt.figure()
ax = self.fig.add_subplot(1, 1, 1)
# limits
lim = np.sum(self.link_lengths) + 0.5
ax.set_xlim([-lim, lim])
ax.set_ylim([-1.1, lim])
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
self.set_patches()
self.fig.show()
if mode == "human":
self.fig.gca().set_title(
f"Iteration: {self._steps}, distance: {self.end_effector - self.bottom_center_of_hole}")
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
# Arm
self.line.set_xdata(self._joints[:, 0])
self.line.set_ydata(self._joints[:, 1])
self.fig.canvas.draw()
self.fig.canvas.flush_events()
# self.fig.show()
elif mode == "partial":
if self._steps == 1:
# fig, ax = plt.subplots()
# Add the patch to the Axes
[plt.gca().add_patch(rect) for rect in self.patches]
# plt.pause(0.01)
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k', alpha=self._steps / 200)
# ax.plot(line_points_in_taskspace[:, 0, 0],
# line_points_in_taskspace[:, 0, 1],
# line_points_in_taskspace[:, -1, 0],
# line_points_in_taskspace[:, -1, 1], marker='o', color='k', alpha=t / 200)
lim = np.sum(self.link_lengths) + 0.5
plt.xlim([-lim, lim])
plt.ylim([-1.1, lim])
plt.pause(0.01)
elif mode == "final":
if self._steps == 199 or self._is_collided:
# fig, ax = plt.subplots()
# Add the patch to the Axes
[plt.gca().add_patch(rect) for rect in self.patches]
plt.xlim(-self.n_links, self.n_links), plt.ylim(-1, self.n_links)
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
plt.pause(0.01)
def set_patches(self):
if self.fig is not None:
self.fig.gca().patches = []
rect_1 = patches.Rectangle((-self.n_links, -1), self.n_links + self._tmp_hole_x - self._tmp_hole_width / 2,
1,
fill=True, edgecolor='k', facecolor='k')
rect_2 = patches.Rectangle((self._tmp_hole_x + self._tmp_hole_width / 2, -1),
self.n_links - self._tmp_hole_x + self._tmp_hole_width / 2, 1,
fill=True, edgecolor='k', facecolor='k')
rect_3 = patches.Rectangle((self._tmp_hole_x - self._tmp_hole_width / 2, -1), self._tmp_hole_width,
1 - self._tmp_hole_depth,
fill=True, edgecolor='k', facecolor='k')
# Add the patch to the Axes
self.fig.gca().add_patch(rect_1)
self.fig.gca().add_patch(rect_2)
self.fig.gca().add_patch(rect_3)
def close(self):
if self.fig is not None:
plt.close(self.fig)
if __name__ == '__main__':
nl = 5
render_mode = "human" # "human" or "partial" or "final"
env = HoleReacher(n_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=None,
hole_depth=1, hole_x=None)
env.reset()
# env.render(mode=render_mode)
for i in range(200):
# objective.load_result("/tmp/cma")
# test with random actions
ac = 2 * env.action_space.sample()
# ac[0] += np.pi/2
obs, rew, d, info = env.step(ac)
# if i % 1 == 0:
if i == 0:
env.render(mode=render_mode)
print(rew)
if d:
env.reset()
env.close()