fancy_gym/alr_envs/utils/legacy/dmp_env_wrapper.py
Maximilian Huettenrauch e482fc09f0 wip
2021-04-21 10:45:34 +02:00

126 lines
4.4 KiB
Python

from alr_envs.utils.policies import get_policy_class
from mp_lib.phase import ExpDecayPhaseGenerator
from mp_lib.basis import DMPBasisGenerator
from mp_lib import dmps
import numpy as np
import gym
class DmpEnvWrapper(gym.Wrapper):
def __init__(self,
env,
num_dof,
num_basis,
start_pos=None,
final_pos=None,
duration=1,
dt=0.01,
alpha_phase=2,
bandwidth_factor=3,
learn_goal=False,
post_traj_time=0.,
policy_type=None,
weights_scale=1.,
goal_scale=1.,
):
super(DmpEnvWrapper, self).__init__(env)
self.num_dof = num_dof
self.num_basis = num_basis
self.dim = num_dof * num_basis
if learn_goal:
self.dim += num_dof
self.learn_goal = learn_goal
self.duration = duration # seconds
time_steps = int(duration / dt)
self.t = np.linspace(0, duration, time_steps)
self.post_traj_steps = int(post_traj_time / dt)
phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration)
basis_generator = DMPBasisGenerator(phase_generator,
duration=duration,
num_basis=self.num_basis,
basis_bandwidth_factor=bandwidth_factor)
self.dmp = dmps.DMP(num_dof=num_dof,
basis_generator=basis_generator,
phase_generator=phase_generator,
num_time_steps=time_steps,
dt=dt
)
self.dmp.dmp_start_pos = start_pos.reshape((1, num_dof))
dmp_weights = np.zeros((num_basis, num_dof))
if learn_goal:
dmp_goal_pos = np.zeros(num_dof)
else:
dmp_goal_pos = final_pos
self.dmp.set_weights(dmp_weights, dmp_goal_pos)
self.weights_scale = weights_scale
self.goal_scale = goal_scale
policy_class = get_policy_class(policy_type)
self.policy = policy_class(env)
def __call__(self, params, contexts=None):
params = np.atleast_2d(params)
rewards = []
infos = []
for p, c in zip(params, contexts):
reward, info = self.rollout(p, c)
rewards.append(reward)
infos.append(info)
return np.array(rewards), infos
def goal_and_weights(self, params):
if len(params.shape) > 1:
assert params.shape[1] == self.dim
else:
assert len(params) == self.dim
params = np.reshape(params, [1, self.dim])
if self.learn_goal:
goal_pos = params[0, -self.num_dof:]
weight_matrix = np.reshape(params[:, :-self.num_dof], [self.num_basis, self.num_dof])
else:
goal_pos = self.dmp.dmp_goal_pos.flatten()
assert goal_pos is not None
weight_matrix = np.reshape(params, [self.num_basis, self.num_dof])
return goal_pos * self.goal_scale, weight_matrix * self.weights_scale
def rollout(self, params, context=None, render=False):
""" This function generates a trajectory based on a DMP and then does the usual loop over reset and step"""
goal_pos, weight_matrix = self.goal_and_weights(params)
self.dmp.set_weights(weight_matrix, goal_pos)
trajectory, velocity = self.dmp.reference_trajectory(self.t)
if self.post_traj_steps > 0:
trajectory = np.vstack([trajectory, np.tile(trajectory[-1, :], [self.post_traj_steps, 1])])
velocity = np.vstack([velocity, np.zeros(shape=(self.post_traj_steps, self.num_dof))])
self._trajectory = trajectory
self._velocity = velocity
rews = []
infos = []
self.env.configure(context)
self.env.reset()
for t, pos_vel in enumerate(zip(trajectory, velocity)):
ac = self.policy.get_action(pos_vel[0], pos_vel[1])
obs, rew, done, info = self.env.step(ac)
rews.append(rew)
infos.append(info)
if render:
self.env.render(mode="human")
if done:
break
reward = np.sum(rews)
return reward, info