fancy_gym/alr_envs/alr/mujoco/beerpong/beerpong.py

274 lines
10 KiB
Python

import os
import mujoco_py.builder
import numpy as np
from gym import utils
from gym.envs.mujoco import MujocoEnv
from alr_envs.alr.mujoco.beerpong.beerpong_reward_staged import BeerPongReward
CUP_POS_MIN = np.array([-1.42, -4.05])
CUP_POS_MAX = np.array([1.42, -1.25])
# CUP_POS_MIN = np.array([-0.32, -2.2])
# CUP_POS_MAX = np.array([0.32, -1.2])
# smaller context space -> Easier task
# CUP_POS_MIN = np.array([-0.16, -2.2])
# CUP_POS_MAX = np.array([0.16, -1.7])
class ALRBeerBongEnv(MujocoEnv, utils.EzPickle):
def __init__(
self, frame_skip=1, apply_gravity_comp=True, noisy=False,
rndm_goal=False, cup_goal_pos=None
):
cup_goal_pos = np.array(cup_goal_pos if cup_goal_pos is not None else [-0.3, -1.2, 0.840])
if cup_goal_pos.shape[0] == 2:
cup_goal_pos = np.insert(cup_goal_pos, 2, 0.840)
self.cup_goal_pos = np.array(cup_goal_pos)
self._steps = 0
# self.xml_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets",
# "beerpong_wo_cup" + ".xml")
self.xml_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets",
"beerpong_wo_cup_big_table" + ".xml")
self.j_min = np.array([-2.6, -1.985, -2.8, -0.9, -4.55, -1.5707, -2.7])
self.j_max = np.array([2.6, 1.985, 2.8, 3.14159, 1.25, 1.5707, 2.7])
self.rndm_goal = rndm_goal
self.apply_gravity_comp = apply_gravity_comp
self.add_noise = noisy
self._start_pos = np.array([0.0, 1.35, 0.0, 1.18, 0.0, -0.786, -1.59])
self._start_vel = np.zeros(7)
self.ball_site_id = 0
self.ball_id = 11
# self._release_step = 175 # time step of ball release
# self._release_step = 130 # time step of ball release
self.release_step = 100 # time step of ball release
self.ep_length = 600 // frame_skip
self.cup_table_id = 10
if noisy:
self.noise_std = 0.01
else:
self.noise_std = 0
reward_function = BeerPongReward
self.reward_function = reward_function()
self.repeat_action = frame_skip
MujocoEnv.__init__(self, self.xml_path, frame_skip=1)
utils.EzPickle.__init__(self)
@property
def start_pos(self):
return self._start_pos
@property
def start_vel(self):
return self._start_vel
def reset(self):
self.reward_function.reset(self.add_noise)
return super().reset()
def reset_model(self):
init_pos_all = self.init_qpos.copy()
init_pos_robot = self.start_pos
init_vel = np.zeros_like(init_pos_all)
self._steps = 0
start_pos = init_pos_all
start_pos[0:7] = init_pos_robot
self.set_state(start_pos, init_vel)
self.sim.model.body_pos[self.cup_table_id] = self.cup_goal_pos
start_pos[7::] = self.sim.data.site_xpos[self.ball_site_id, :].copy()
self.set_state(start_pos, init_vel)
if self.rndm_goal:
xy = self.np_random.uniform(CUP_POS_MIN, CUP_POS_MAX)
xyz = np.zeros(3)
xyz[:2] = xy
xyz[-1] = 0.840
self.sim.model.body_pos[self.cup_table_id] = xyz
return self._get_obs()
def step(self, a):
reward_dist = 0.0
angular_vel = 0.0
for _ in range(self.repeat_action):
if self.apply_gravity_comp:
applied_action = a + self.sim.data.qfrc_bias[:len(a)].copy() / self.model.actuator_gear[:, 0]
else:
applied_action = a
try:
self.do_simulation(applied_action, self.frame_skip)
self.reward_function.initialize(self)
self.reward_function.check_contacts(self.sim)
if self._steps < self.release_step:
self.sim.data.qpos[7::] = self.sim.data.site_xpos[self.ball_site_id, :].copy()
self.sim.data.qvel[7::] = self.sim.data.site_xvelp[self.ball_site_id, :].copy()
elif self._steps == self.release_step and self.add_noise:
self.sim.data.qvel[7::] += self.noise_std * np.random.randn(3)
crash = False
except mujoco_py.builder.MujocoException:
crash = True
# joint_cons_viol = self.check_traj_in_joint_limits()
ob = self._get_obs()
if not crash:
reward, reward_infos = self.reward_function.compute_reward(self, applied_action)
success = reward_infos['success']
is_collided = reward_infos['is_collided']
ball_pos = reward_infos['ball_pos']
ball_vel = reward_infos['ball_vel']
done = is_collided or self._steps == self.ep_length - 1
self._steps += 1
else:
reward = -30
reward_infos = dict()
success = False
is_collided = False
done = True
ball_pos = np.zeros(3)
ball_vel = np.zeros(3)
infos = dict(
reward_dist=reward_dist,
reward=reward,
velocity=angular_vel,
# traj=self._q_pos,
action=a,
q_pos=self.sim.data.qpos[0:7].ravel().copy(),
q_vel=self.sim.data.qvel[0:7].ravel().copy(),
ball_pos=ball_pos,
ball_vel=ball_vel,
success=success,
is_collided=is_collided, sim_crash=crash,
table_contact_first=int(not self.reward_function.ball_ground_contact_first)
)
infos.update(reward_infos)
return ob, reward, done, infos
def _check_traj_in_joint_limits(self):
return any(self.current_pos > self.j_max) or any(self.current_pos < self.j_min)
def _get_obs(self):
theta = self.sim.data.qpos.flat[:7]
theta_dot = self.sim.data.qvel.flat[:7]
ball_pos = self.sim.data.body_xpos[self.sim.model._body_name2id["ball"]].copy()
cup_goal_diff_final = ball_pos - self.sim.data.site_xpos[
self.sim.model._site_name2id["cup_goal_final_table"]].copy()
cup_goal_diff_top = ball_pos - self.sim.data.site_xpos[self.sim.model._site_name2id["cup_goal_table"]].copy()
return np.concatenate([
np.cos(theta),
np.sin(theta),
theta_dot,
cup_goal_diff_final,
cup_goal_diff_top,
self.sim.model.body_pos[self.cup_table_id][:2].copy(),
[self._steps],
])
def compute_reward(self):
@property
def dt(self):
return super(ALRBeerBongEnv, self).dt * self.repeat_action
class ALRBeerBongEnvFixedReleaseStep(ALRBeerBongEnv):
def __init__(self, frame_skip=1, apply_gravity_comp=True, noisy=False, rndm_goal=False, cup_goal_pos=None):
super().__init__(frame_skip, apply_gravity_comp, noisy, rndm_goal, cup_goal_pos)
self.release_step = 62 # empirically evaluated for frame_skip=2!
class ALRBeerBongEnvStepBasedEpisodicReward(ALRBeerBongEnv):
def __init__(self, frame_skip=1, apply_gravity_comp=True, noisy=False, rndm_goal=False, cup_goal_pos=None):
super().__init__(frame_skip, apply_gravity_comp, noisy, rndm_goal, cup_goal_pos)
self.release_step = 62 # empirically evaluated for frame_skip=2!
def step(self, a):
if self._steps < self.release_step:
return super(ALRBeerBongEnvStepBasedEpisodicReward, self).step(a)
else:
reward = 0
done = False
while not done:
sub_ob, sub_reward, done, sub_infos = super(ALRBeerBongEnvStepBasedEpisodicReward, self).step(
np.zeros(a.shape))
reward += sub_reward
infos = sub_infos
ob = sub_ob
ob[-1] = self.release_step + 1 # Since we simulate until the end of the episode, PPO does not see the
# internal steps and thus, the observation also needs to be set correctly
return ob, reward, done, infos
class ALRBeerBongEnvStepBased(ALRBeerBongEnv):
def __init__(self, frame_skip=1, apply_gravity_comp=True, noisy=False, rndm_goal=False, cup_goal_pos=None):
super().__init__(frame_skip, apply_gravity_comp, noisy, rndm_goal, cup_goal_pos)
self.release_step = 62 # empirically evaluated for frame_skip=2!
def step(self, a):
if self._steps < self.release_step:
return super(ALRBeerBongEnvStepBased, self).step(a)
else:
reward = 0
done = False
while not done:
sub_ob, sub_reward, done, sub_infos = super(ALRBeerBongEnvStepBased, self).step(np.zeros(a.shape))
if not done or sub_infos['sim_crash']:
reward += sub_reward
else:
ball_pos = self.sim.data.body_xpos[self.sim.model._body_name2id["ball"]].copy()
cup_goal_dist_final = np.linalg.norm(ball_pos - self.sim.data.site_xpos[
self.sim.model._site_name2id["cup_goal_final_table"]].copy())
cup_goal_dist_top = np.linalg.norm(ball_pos - self.sim.data.site_xpos[
self.sim.model._site_name2id["cup_goal_table"]].copy())
if sub_infos['success']:
dist_rew = -cup_goal_dist_final ** 2
else:
dist_rew = -0.5 * cup_goal_dist_final ** 2 - cup_goal_dist_top ** 2
reward = reward - sub_infos['action_cost'] + dist_rew
infos = sub_infos
ob = sub_ob
ob[-1] = self.release_step + 1 # Since we simulate until the end of the episode, PPO does not see the
# internal steps and thus, the observation also needs to be set correctly
return ob, reward, done, infos
if __name__ == "__main__":
# env = ALRBeerBongEnv(rndm_goal=True)
# env = ALRBeerBongEnvStepBased(frame_skip=2, rndm_goal=True)
# env = ALRBeerBongEnvStepBasedEpisodicReward(frame_skip=2, rndm_goal=True)
env = ALRBeerBongEnvFixedReleaseStep(frame_skip=2, rndm_goal=True)
import time
env.reset()
env.render("human")
for i in range(1500):
ac = 10 * env.action_space.sample()
# ac = np.zeros(7)
# ac[0] = -1
# if env._steps > 150:
# ac[0] = 1
obs, rew, d, info = env.step(ac)
env.render("human")
print(env.dt)
print(rew)
if d:
print('RESETTING')
env.reset()
time.sleep(1)
env.close()