50 lines
1.5 KiB
Python
50 lines
1.5 KiB
Python
from typing import Tuple, Union
|
|
|
|
import numpy as np
|
|
|
|
from alr_envs.mp.episodic_wrapper import EpisodicWrapper
|
|
|
|
|
|
class NewMPWrapper(EpisodicWrapper):
|
|
|
|
# def __init__(self, replanning_model):
|
|
# self.replanning_model = replanning_model
|
|
|
|
@property
|
|
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
|
return self.env.sim.data.qpos[0:7].copy()
|
|
|
|
@property
|
|
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
|
return self.env.sim.data.qvel[0:7].copy()
|
|
|
|
def set_active_obs(self):
|
|
return np.hstack([
|
|
[False] * 7, # cos
|
|
[False] * 7, # sin
|
|
[False] * 7, # joint velocities
|
|
[False] * 3, # cup_goal_diff_final
|
|
[False] * 3, # cup_goal_diff_top
|
|
[True] * 2, # xy position of cup
|
|
[False] # env steps
|
|
])
|
|
|
|
def do_replanning(self, pos, vel, s, a, t, last_replan_step):
|
|
return False
|
|
# const = np.arange(0, 1000, 10)
|
|
# return bool(self.replanning_model(s))
|
|
|
|
def _episode_callback(self, action: np.ndarray) -> Tuple[np.ndarray, Union[np.ndarray, None]]:
|
|
if self.mp.learn_tau:
|
|
self.env.env.release_step = action[0] / self.env.dt # Tau value
|
|
return action, None
|
|
else:
|
|
return action, None
|
|
|
|
def set_context(self, context):
|
|
xyz = np.zeros(3)
|
|
xyz[:2] = context
|
|
xyz[-1] = 0.840
|
|
self.env.env.model.body_pos[self.env.env.cup_table_id] = xyz
|
|
return self.get_observation_from_step(self.env.env._get_obs())
|