fancy_gym/test/utils.py
2023-01-12 17:21:56 +01:00

87 lines
3.2 KiB
Python

import gymnasium as gym
import numpy as np
from fancy_gym import make
def run_env(env_id, iterations=None, seed=0, render=False):
"""
Example for running a DMC based env in the step based setting.
The env_id has to be specified as `dmc:domain_name-task_name` or
for manipulation tasks as `manipulation-environment_name`
Args:
env_id: Either `dmc:domain_name-task_name` or `dmc:manipulation-environment_name`
iterations: Number of rollout steps to run
seed: random seeding
render: Render the episode
Returns: observations, rewards, terminations, truncations, actions
"""
env: gym.Env = make(env_id, seed=seed)
rewards = []
observations = []
actions = []
terminations = []
truncations = []
obs, _ = env.reset()
verify_observations(obs, env.observation_space, "reset()")
iterations = iterations or (env.spec.max_episode_steps or 1)
# number of samples(multiple environment steps)
for i in range(iterations):
observations.append(obs)
ac = env.action_space.sample()
actions.append(ac)
# ac = np.random.uniform(env.action_space.low, env.action_space.high, env.action_space.shape)
obs, reward, terminated, truncated, info = env.step(ac)
verify_observations(obs, env.observation_space, "step()")
verify_reward(reward)
verify_done(terminated)
verify_done(truncated)
rewards.append(reward)
terminations.append(terminated)
truncations.append(truncated)
if render:
env.render("human")
if terminated or truncated:
break
assert terminated or truncated, "Termination or truncation flag is not True after end of episode."
observations.append(obs)
env.close()
del env
return np.array(observations), np.array(rewards), np.array(terminations), np.array(truncations), np.array(actions)
def run_env_determinism(env_id: str, seed: int):
traj1 = run_env(env_id, seed=seed)
traj2 = run_env(env_id, seed=seed)
# Iterate over two trajectories, which should have the same state and action sequence
for i, time_step in enumerate(zip(*traj1, *traj2)):
obs1, rwd1, term1, trunc1, ac1, obs2, rwd2, term2, trunc2, ac2 = time_step
assert np.array_equal(obs1, obs2), f"Observations [{i}] {obs1} and {obs2} do not match."
assert np.array_equal(ac1, ac2), f"Actions [{i}] {ac1} and {ac2} do not match."
assert np.array_equal(rwd1, rwd2), f"Rewards [{i}] {rwd1} and {rwd2} do not match."
assert np.array_equal(term1, term2), f"Terminateds [{i}] {term1} and {term2} do not match."
assert np.array_equal(term1, term2), f"Truncateds [{i}] {trunc1} and {trunc2} do not match."
def verify_observations(obs, observation_space: gym.Space, obs_type="reset()"):
assert observation_space.contains(obs), \
f"Observation {obs} received from {obs_type} not contained in observation space {observation_space}."
def verify_reward(reward):
assert isinstance(reward, (float, int)), f"Returned type {type(reward)} as reward, expected float or int."
def verify_done(done):
assert isinstance(done, bool), f"Returned {done} as done flag, expected bool."