fancy_gym/alr_envs/mujoco/reacher/balancing.py

54 lines
1.7 KiB
Python

import os
import numpy as np
from gym import utils
from gym.envs.mujoco import mujoco_env
import alr_envs.utils.utils as alr_utils
class BalancingEnv(mujoco_env.MujocoEnv, utils.EzPickle):
def __init__(self, n_links=5):
utils.EzPickle.__init__(**locals())
self.n_links = n_links
if n_links == 5:
file_name = 'reacher_5links.xml'
elif n_links == 7:
file_name = 'reacher_7links.xml'
else:
raise ValueError(f"Invalid number of links {n_links}, only 5 or 7 allowed.")
mujoco_env.MujocoEnv.__init__(self, os.path.join(os.path.dirname(__file__), "assets", file_name), 2)
def step(self, a):
angle = alr_utils.angle_normalize(np.sum(self.sim.data.qpos.flat[:self.n_links]), type="rad")
reward = - np.abs(angle)
self.do_simulation(a, self.frame_skip)
ob = self._get_obs()
done = False
return ob, reward, done, dict(angle=angle, end_effector=self.get_body_com("fingertip").copy())
def viewer_setup(self):
self.viewer.cam.trackbodyid = 1
def reset_model(self):
# This also generates a goal, we however do not need/use it
qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos
qpos[-2:] = 0
qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv)
qvel[-2:] = 0
self.set_state(qpos, qvel)
return self._get_obs()
def _get_obs(self):
theta = self.sim.data.qpos.flat[:self.n_links]
return np.concatenate([
np.cos(theta),
np.sin(theta),
self.sim.data.qvel.flat[:self.n_links], # this is angular velocity
])