fancy_gym/fancy_gym/envs/mujoco/walker_2d_jump/walker_2d_jump.py

173 lines
5.9 KiB
Python

import os
from typing import Optional, Any, Dict, Tuple
import numpy as np
from gymnasium.envs.mujoco.walker2d_v4 import Walker2dEnv, DEFAULT_CAMERA_CONFIG
from gymnasium.core import ObsType
from gymnasium import utils
from gymnasium.envs.mujoco import MujocoEnv
from gymnasium.spaces import Box
MAX_EPISODE_STEPS_WALKERJUMP = 300
# TODO: Right now this environment only considers jumping to a specific height, which is not nice. It should be extended
# to the same structure as the Hopper, where the angles are randomized (->contexts) and the agent should jump as height
# as possible, while landing at a specific target position
class Walker2dEnvCustomXML(Walker2dEnv):
def __init__(
self,
xml_file,
forward_reward_weight=1.0,
ctrl_cost_weight=1e-3,
healthy_reward=1.0,
terminate_when_unhealthy=True,
healthy_z_range=(0.8, 2.0),
healthy_angle_range=(-1.0, 1.0),
reset_noise_scale=5e-3,
exclude_current_positions_from_observation=True,
**kwargs,
):
utils.EzPickle.__init__(
self,
xml_file,
forward_reward_weight,
ctrl_cost_weight,
healthy_reward,
terminate_when_unhealthy,
healthy_z_range,
healthy_angle_range,
reset_noise_scale,
exclude_current_positions_from_observation,
**kwargs,
)
self._forward_reward_weight = forward_reward_weight
self._ctrl_cost_weight = ctrl_cost_weight
self._healthy_reward = healthy_reward
self._terminate_when_unhealthy = terminate_when_unhealthy
self._healthy_z_range = healthy_z_range
self._healthy_angle_range = healthy_angle_range
self._reset_noise_scale = reset_noise_scale
self._exclude_current_positions_from_observation = (
exclude_current_positions_from_observation
)
if exclude_current_positions_from_observation:
observation_space = Box(
low=-np.inf, high=np.inf, shape=(18,), dtype=np.float64
)
else:
observation_space = Box(
low=-np.inf, high=np.inf, shape=(19,), dtype=np.float64
)
self.observation_space = observation_space
MujocoEnv.__init__(
self,
xml_file,
4,
observation_space=observation_space,
default_camera_config=DEFAULT_CAMERA_CONFIG,
**kwargs,
)
class Walker2dJumpEnv(Walker2dEnvCustomXML):
"""
healthy reward 1.0 -> 0.005 -> 0.0025 not from alex
penalty 10 -> 0 not from alex
"""
def __init__(self,
xml_file='walker2d.xml',
forward_reward_weight=1.0,
ctrl_cost_weight=1e-3,
healthy_reward=0.0025,
terminate_when_unhealthy=True,
healthy_z_range=(0.8, 2.0),
healthy_angle_range=(-1.0, 1.0),
reset_noise_scale=5e-3,
penalty=0,
exclude_current_positions_from_observation=True,
max_episode_steps=300,
**kwargs):
self.current_step = 0
self.max_episode_steps = max_episode_steps
self.max_height = 0
self._penalty = penalty
self.goal = 0
xml_file = os.path.join(os.path.dirname(__file__), "assets", xml_file)
super().__init__(xml_file=xml_file,
forward_reward_weight=forward_reward_weight,
ctrl_cost_weight=ctrl_cost_weight,
healthy_reward=healthy_reward,
terminate_when_unhealthy=terminate_when_unhealthy,
healthy_z_range=healthy_z_range,
healthy_angle_range=healthy_angle_range,
reset_noise_scale=reset_noise_scale,
exclude_current_positions_from_observation=exclude_current_positions_from_observation,
**kwargs)
def step(self, action):
self.current_step += 1
self.do_simulation(action, self.frame_skip)
# pos_after = self.get_body_com("torso")[0]
height = self.get_body_com("torso")[2]
self.max_height = max(height, self.max_height)
terminated = bool(height < 0.2)
ctrl_cost = self.control_cost(action)
costs = ctrl_cost
rewards = 0
if self.current_step >= self.max_episode_steps or terminated:
terminated = True
height_goal_distance = -10 * (np.linalg.norm(self.max_height - self.goal))
healthy_reward = self.healthy_reward * self.current_step
rewards = height_goal_distance + healthy_reward
observation = self._get_obs()
reward = rewards - costs
info = {
'height': height,
'max_height': self.max_height,
'goal': self.goal,
}
truncated = False
return observation, reward, terminated, truncated, info
def _get_obs(self):
return np.append(super()._get_obs(), self.goal)
def reset(self, *, seed: Optional[int] = None, options: Optional[Dict[str, Any]] = None) \
-> Tuple[ObsType, Dict[str, Any]]:
self.current_step = 0
self.max_height = 0
ret = super().reset(seed=seed, options=options)
self.goal = self.np_random.uniform(1.5, 2.5, 1) # 1.5 3.0
return ret
# overwrite reset_model to make it deterministic
def reset_model(self):
noise_low = -self._reset_noise_scale
noise_high = self._reset_noise_scale
qpos = self.init_qpos # + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nq)
qvel = self.init_qvel # + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nv)
self.set_state(qpos, qvel)
observation = self._get_obs()
return observation