fancy_gym/alr_envs/dmc/dmc_wrapper.py

185 lines
6.7 KiB
Python

# Adopted from: https://github.com/denisyarats/dmc2gym/blob/master/dmc2gym/wrappers.py
# License: MIT
# Copyright (c) 2020 Denis Yarats
import collections
import cv2
from collections.abc import MutableMapping
from typing import Any, Dict, Tuple, Optional, Union, Callable
from dm_control import composer
import gym
import numpy as np
from dm_control.rl import control
from dm_env import specs
from gym import spaces
from gym.core import ObsType
def _spec_to_box(spec):
def extract_min_max(s):
assert s.dtype == np.float64 or s.dtype == np.float32, \
f"Only float64 and float32 types are allowed, instead {s.dtype} was found"
dim = int(np.prod(s.shape))
if type(s) == specs.Array:
bound = np.inf * np.ones(dim, dtype=s.dtype)
return -bound, bound
elif type(s) == specs.BoundedArray:
zeros = np.zeros(dim, dtype=s.dtype)
return s.minimum + zeros, s.maximum + zeros
mins, maxs = [], []
for s in spec:
mn, mx = extract_min_max(s)
mins.append(mn)
maxs.append(mx)
low = np.concatenate(mins, axis=0)
high = np.concatenate(maxs, axis=0)
assert low.shape == high.shape
return spaces.Box(low, high, dtype=s.dtype)
def _flatten_obs(obs: MutableMapping):
"""
Flattens an observation of type MutableMapping, e.g. a dict to a 1D array.
Args:
obs: observation to flatten
Returns: 1D array of observation
"""
if not isinstance(obs, MutableMapping):
raise ValueError(f'Requires dict-like observations structure. {type(obs)} found.')
# Keep key order consistent for non OrderedDicts
keys = obs.keys() if isinstance(obs, collections.OrderedDict) else sorted(obs.keys())
obs_vals = [np.array([obs[key]]) if np.isscalar(obs[key]) else obs[key].ravel() for key in keys]
return np.concatenate(obs_vals)
class DMCWrapper(gym.Env):
def __init__(self,
env: Callable[[], Union[composer.Environment, control.Environment]],
):
# TODO: Currently this is required to be a function because dmc does not allow to copy composers environments
self._env = env()
# action and observation space
self._action_space = _spec_to_box([self._env.action_spec()])
self._observation_space = _spec_to_box(self._env.observation_spec().values())
self._window = None
self.id = 'dmc'
def __getattr__(self, item):
"""Propagate only non-existent properties to wrapped env."""
if item.startswith('_'):
raise AttributeError("attempted to get missing private attribute '{}'".format(item))
if item in self.__dict__:
return getattr(self, item)
return getattr(self._env, item)
def _get_obs(self, time_step):
obs = _flatten_obs(time_step.observation).astype(self.observation_space.dtype)
return obs
@property
def observation_space(self):
return self._observation_space
@property
def action_space(self):
return self._action_space
@property
def dt(self):
return self._env.control_timestep()
def seed(self, seed=None):
self._action_space.seed(seed)
self._observation_space.seed(seed)
def step(self, action) -> Tuple[np.ndarray, float, bool, Dict[str, Any]]:
assert self._action_space.contains(action)
extra = {'internal_state': self._env.physics.get_state().copy()}
time_step = self._env.step(action)
reward = time_step.reward or 0.
done = time_step.last()
obs = self._get_obs(time_step)
extra['discount'] = time_step.discount
return obs, reward, done, extra
def reset(self, *, seed: Optional[int] = None, return_info: bool = False,
options: Optional[dict] = None, ) -> Union[ObsType, Tuple[ObsType, dict]]:
time_step = self._env.reset()
obs = self._get_obs(time_step)
return obs
def render(self, mode='rgb_array', height=240, width=320, camera_id=-1, overlays=(), depth=False,
segmentation=False, scene_option=None, render_flag_overrides=None):
# assert mode == 'rgb_array', 'only support rgb_array mode, given %s' % mode
if mode == "rgb_array":
return self._env.physics.render(height=height, width=width, camera_id=camera_id, overlays=overlays,
depth=depth, segmentation=segmentation, scene_option=scene_option,
render_flag_overrides=render_flag_overrides)
# Render max available buffer size. Larger is only possible by altering the XML.
img = self._env.physics.render(height=self._env.physics.model.vis.global_.offheight,
width=self._env.physics.model.vis.global_.offwidth,
camera_id=camera_id, overlays=overlays, depth=depth, segmentation=segmentation,
scene_option=scene_option, render_flag_overrides=render_flag_overrides)
if depth:
img = np.dstack([img.astype(np.uint8)] * 3)
if mode == 'human':
if self._window is None:
self._window = cv2.namedWindow(self.id, cv2.WINDOW_AUTOSIZE)
cv2.imshow(self.id, img[..., ::-1]) # Image in BGR
cv2.waitKey(1)
# PYGAME seems to destroy some global rendering configs from the physics render
# except ImportError:
# import pygame
# img_copy = img.copy().transpose((1, 0, 2))
# if self._window is None:
# pygame.init()
# pygame.display.init()
# self._window = pygame.display.set_mode(img_copy.shape[:2])
# self.clock = pygame.time.Clock()
#
# surf = pygame.surfarray.make_surface(img_copy)
# self._window.blit(surf, (0, 0))
# pygame.event.pump()
# self.clock.tick(30)
# pygame.display.flip()
def close(self):
super().close()
if self._window is not None:
try:
import cv2
cv2.destroyWindow(self.id)
except ImportError:
import pygame
pygame.display.quit()
pygame.quit()
@property
def reward_range(self) -> Tuple[float, float]:
reward_spec = self._env.reward_spec()
if isinstance(reward_spec, specs.BoundedArray):
return reward_spec.minimum, reward_spec.maximum
return -float('inf'), float('inf')
@property
def metadata(self):
return {'render.modes': ['human', 'rgb_array'],
'video.frames_per_second': round(1.0 / self._env.control_timestep())}