fancy_gym/alr_envs/alr/mujoco/reacher/alr_reacher.py

128 lines
4.4 KiB
Python

import os
import numpy as np
from gym import utils
from gym.envs.mujoco import MujocoEnv
import alr_envs.utils.utils as alr_utils
class ALRReacherEnv(MujocoEnv, utils.EzPickle):
def __init__(self, steps_before_reward=200, n_links=5, balance=False):
utils.EzPickle.__init__(**locals())
self._steps = 0
self.steps_before_reward = steps_before_reward
self.n_links = n_links
self.balance = balance
self.balance_weight = 1.0
self.reward_weight = 1
if steps_before_reward == 200:
self.reward_weight = 200
elif steps_before_reward == 50:
self.reward_weight = 50
if n_links == 5:
file_name = 'reacher_5links.xml'
elif n_links == 7:
file_name = 'reacher_7links.xml'
else:
raise ValueError(f"Invalid number of links {n_links}, only 5 or 7 allowed.")
MujocoEnv.__init__(self, os.path.join(os.path.dirname(__file__), "assets", file_name), 2)
def step(self, a):
self._steps += 1
reward_dist = 0.0
angular_vel = 0.0
reward_balance = 0.0
if self._steps >= self.steps_before_reward:
vec = self.get_body_com("fingertip") - self.get_body_com("target")
reward_dist -= self.reward_weight * np.linalg.norm(vec)
angular_vel -= np.linalg.norm(self.sim.data.qvel.flat[:self.n_links])
reward_ctrl = - np.square(a).sum()
if self.balance:
reward_balance -= self.balance_weight * np.abs(
alr_utils.angle_normalize(np.sum(self.sim.data.qpos.flat[:self.n_links]), type="rad"))
reward = reward_dist + reward_ctrl + angular_vel + reward_balance
self.do_simulation(a, self.frame_skip)
ob = self._get_obs()
done = False
return ob, reward, done, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl,
velocity=angular_vel, reward_balance=reward_balance,
end_effector=self.get_body_com("fingertip").copy(),
goal=self.goal if hasattr(self, "goal") else None)
def viewer_setup(self):
self.viewer.cam.trackbodyid = 0
def reset_model(self):
qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos
while True:
self.goal = self.np_random.uniform(low=-self.n_links / 10, high=self.n_links / 10, size=2)
if np.linalg.norm(self.goal) < self.n_links / 10:
break
qpos[-2:] = self.goal
qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv)
qvel[-2:] = 0
self.set_state(qpos, qvel)
self._steps = 0
return self._get_obs()
def _get_obs(self):
theta = self.sim.data.qpos.flat[:self.n_links]
return np.concatenate([
np.cos(theta),
np.sin(theta),
self.sim.data.qpos.flat[self.n_links:], # this is goal position
self.sim.data.qvel.flat[:self.n_links], # this is angular velocity
self.get_body_com("fingertip") - self.get_body_com("target"),
# self.get_body_com("target"), # only return target to make problem harder
[self._steps],
])
class ALRReacherOptCtrlEnv(ALRReacherEnv):
def __init__(self, steps_before_reward=200, n_links=5, balance=False):
super(ALRReacherOptCtrlEnv, self).__init__(steps_before_reward, n_links, balance)
self.goal = np.array([0.1, 0.1])
def _get_obs(self):
theta = self.sim.data.qpos.flat[:self.n_links]
return np.concatenate([
theta,
self.sim.data.qvel.flat[:self.n_links], # this is angular velocity
])
def reset_model(self):
qpos = self.init_qpos
qpos[-2:] = self.goal
qvel = self.init_qvel
qvel[-2:] = 0
self.set_state(qpos, qvel)
self._steps = 0
return self._get_obs()
if __name__ == '__main__':
nl = 5
render_mode = "human" # "human" or "partial" or "final"
env = ALRReacherEnv(n_links=nl)
obs = env.reset()
for i in range(2000):
# objective.load_result("/tmp/cma")
# test with random actions
ac = env.action_space.sample()
obs, rew, d, info = env.step(ac)
if i % 10 == 0:
env.render(mode=render_mode)
if d:
env.reset()
env.close()