52 lines
1.3 KiB
Python
52 lines
1.3 KiB
Python
from typing import Tuple, Union
|
|
|
|
import numpy as np
|
|
|
|
from mp_env_api import MPEnvWrapper
|
|
|
|
|
|
class MPWrapper(MPEnvWrapper):
|
|
|
|
def __init__(self, env, n_poles: int = 1):
|
|
self.n_poles = n_poles
|
|
super().__init__(env)
|
|
|
|
|
|
@property
|
|
def active_obs(self):
|
|
# Besides the ball position, the environment is always set to 0.
|
|
return np.hstack([
|
|
[True], # slider position
|
|
[True] * 2 * self.n_poles, # sin/cos hinge angles
|
|
[True], # slider velocity
|
|
[True] * self.n_poles, # hinge velocities
|
|
])
|
|
|
|
@property
|
|
def current_pos(self) -> Union[float, int, np.ndarray]:
|
|
return self.env.physics.named.data.qpos["slider"]
|
|
|
|
@property
|
|
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
|
return self.env.physics.named.data.qvel["slider"]
|
|
|
|
@property
|
|
def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
|
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
|
|
|
@property
|
|
def dt(self) -> Union[float, int]:
|
|
return self.env.dt
|
|
|
|
|
|
class TwoPolesMPWrapper(MPWrapper):
|
|
|
|
def __init__(self, env):
|
|
super().__init__(env, n_poles=2)
|
|
|
|
|
|
class ThreePolesMPWrapper(MPWrapper):
|
|
|
|
def __init__(self, env):
|
|
super().__init__(env, n_poles=3)
|