36 lines
1.1 KiB
Python
36 lines
1.1 KiB
Python
from typing import Tuple, Union
|
|
|
|
import numpy as np
|
|
|
|
from mp_env_api import MPEnvWrapper
|
|
|
|
|
|
class MPWrapper(MPEnvWrapper):
|
|
@property
|
|
def active_obs(self):
|
|
return np.hstack([
|
|
[self.env.random_start] * self.env.n_links, # cos
|
|
[self.env.random_start] * self.env.n_links, # sin
|
|
[self.env.random_start] * self.env.n_links, # velocity
|
|
[self.env.initial_width is None], # hole width
|
|
# [self.env.hole_depth is None], # hole depth
|
|
[True] * 2, # x-y coordinates of target distance
|
|
[False] # env steps
|
|
])
|
|
|
|
@property
|
|
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
|
return self.env.current_pos
|
|
|
|
@property
|
|
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
|
return self.env.current_vel
|
|
|
|
@property
|
|
def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
|
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
|
|
|
@property
|
|
def dt(self) -> Union[float, int]:
|
|
return self.env.dt
|