125 lines
4.4 KiB
Python
125 lines
4.4 KiB
Python
import os
|
|
|
|
import numpy as np
|
|
from gym import utils
|
|
from gym.envs.mujoco import MujocoEnv
|
|
|
|
import alr_envs.utils.utils as alr_utils
|
|
|
|
|
|
class ALRReacherEnv(MujocoEnv, utils.EzPickle):
|
|
def __init__(self, steps_before_reward=200, n_links=5, balance=False):
|
|
utils.EzPickle.__init__(**locals())
|
|
|
|
self._steps = 0
|
|
self.steps_before_reward = steps_before_reward
|
|
self.n_links = n_links
|
|
|
|
self.balance = balance
|
|
self.balance_weight = 1.0
|
|
|
|
self.reward_weight = 1
|
|
if steps_before_reward == 200:
|
|
self.reward_weight = 200
|
|
elif steps_before_reward == 50:
|
|
self.reward_weight = 50
|
|
|
|
if n_links == 5:
|
|
file_name = 'reacher_5links.xml'
|
|
elif n_links == 7:
|
|
file_name = 'reacher_7links.xml'
|
|
else:
|
|
raise ValueError(f"Invalid number of links {n_links}, only 5 or 7 allowed.")
|
|
|
|
MujocoEnv.__init__(self, os.path.join(os.path.dirname(__file__), "assets", file_name), 2)
|
|
|
|
def step(self, a):
|
|
self._steps += 1
|
|
|
|
reward_dist = 0.0
|
|
angular_vel = 0.0
|
|
reward_balance = 0.0
|
|
if self._steps >= self.steps_before_reward:
|
|
vec = self.get_body_com("fingertip") - self.get_body_com("target")
|
|
reward_dist -= self.reward_weight * np.linalg.norm(vec)
|
|
if self.steps_before_reward > 0:
|
|
# avoid giving this penalty for normal step based case
|
|
angular_vel -= np.linalg.norm(self.sim.data.qvel.flat[:self.n_links])
|
|
# angular_vel -= np.square(self.sim.data.qvel.flat[:self.n_links]).sum()
|
|
reward_ctrl = - np.square(a).sum()
|
|
|
|
if self.balance:
|
|
reward_balance -= self.balance_weight * np.abs(
|
|
alr_utils.angle_normalize(np.sum(self.sim.data.qpos.flat[:self.n_links]), type="rad"))
|
|
|
|
reward = reward_dist + reward_ctrl + angular_vel + reward_balance
|
|
self.do_simulation(a, self.frame_skip)
|
|
ob = self._get_obs()
|
|
done = False
|
|
return ob, reward, done, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl,
|
|
velocity=angular_vel, reward_balance=reward_balance,
|
|
end_effector=self.get_body_com("fingertip").copy(),
|
|
goal=self.goal if hasattr(self, "goal") else None)
|
|
|
|
def viewer_setup(self):
|
|
self.viewer.cam.trackbodyid = 0
|
|
|
|
# def reset_model(self):
|
|
# qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos
|
|
# while True:
|
|
# self.goal = self.np_random.uniform(low=-self.n_links / 10, high=self.n_links / 10, size=2)
|
|
# if np.linalg.norm(self.goal) < self.n_links / 10:
|
|
# break
|
|
# qpos[-2:] = self.goal
|
|
# qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv)
|
|
# qvel[-2:] = 0
|
|
# self.set_state(qpos, qvel)
|
|
# self._steps = 0
|
|
#
|
|
# return self._get_obs()
|
|
|
|
def reset_model(self):
|
|
qpos = self.init_qpos
|
|
if not hasattr(self, "goal"):
|
|
while True:
|
|
self.goal = self.np_random.uniform(low=-self.n_links / 10, high=self.n_links / 10, size=2)
|
|
if np.linalg.norm(self.goal) < self.n_links / 10:
|
|
break
|
|
qpos[-2:] = self.goal
|
|
qvel = self.init_qvel
|
|
qvel[-2:] = 0
|
|
self.set_state(qpos, qvel)
|
|
self._steps = 0
|
|
|
|
return self._get_obs()
|
|
|
|
def _get_obs(self):
|
|
theta = self.sim.data.qpos.flat[:self.n_links]
|
|
return np.concatenate([
|
|
np.cos(theta),
|
|
np.sin(theta),
|
|
self.sim.data.qpos.flat[self.n_links:], # this is goal position
|
|
self.sim.data.qvel.flat[:self.n_links], # this is angular velocity
|
|
self.get_body_com("fingertip") - self.get_body_com("target"),
|
|
# self.get_body_com("target"), # only return target to make problem harder
|
|
[self._steps],
|
|
])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
nl = 5
|
|
render_mode = "human" # "human" or "partial" or "final"
|
|
env = ALRReacherEnv(n_links=nl)
|
|
obs = env.reset()
|
|
|
|
for i in range(2000):
|
|
# objective.load_result("/tmp/cma")
|
|
# test with random actions
|
|
ac = env.action_space.sample()
|
|
obs, rew, d, info = env.step(ac)
|
|
if i % 10 == 0:
|
|
env.render(mode=render_mode)
|
|
if d:
|
|
env.reset()
|
|
|
|
env.close() |