fancy_gym/alr_envs/classic_control/viapoint_reacher/viapoint_reacher.py
2021-06-25 16:17:22 +02:00

287 lines
9.9 KiB
Python

from typing import Iterable, Union
import gym
import matplotlib.pyplot as plt
import numpy as np
from gym.utils import seeding
from alr_envs.classic_control.utils import check_self_collision
class ViaPointReacher(gym.Env):
def __init__(self, n_links, random_start: bool = False, via_target: Union[None, Iterable] = None,
target: Union[None, Iterable] = None, allow_self_collision=False, collision_penalty=1000):
self.n_links = n_links
self.link_lengths = np.ones((n_links, 1))
self.random_start = random_start
# provided initial parameters
self.intitial_target = target # provided target value
self.initial_via_target = via_target # provided via point target value
# temp container for current env state
self._via_point = np.ones(2)
self._goal = np.array((n_links, 0))
# collision
self.allow_self_collision = allow_self_collision
self.collision_penalty = collision_penalty
# state
self._joints = None
self._joint_angles = None
self._angle_velocity = None
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
self._start_vel = np.zeros(self.n_links)
self.weight_matrix_scale = 1
self._dt = 0.01
action_bound = np.pi * np.ones((self.n_links,))
state_bound = np.hstack([
[np.pi] * self.n_links, # cos
[np.pi] * self.n_links, # sin
[np.inf] * self.n_links, # velocity
[np.inf] * 2, # x-y coordinates of via point distance
[np.inf] * 2, # x-y coordinates of target distance
[np.inf] # env steps, because reward start after n steps
])
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
# containers for plotting
self.metadata = {'render.modes': ["human", "partial"]}
self.fig = None
self._steps = 0
self.seed()
@property
def dt(self):
return self._dt
@property
def start_pos(self):
return self._start_pos
def step(self, action: np.ndarray):
"""
a single step with an action in joint velocity space
"""
vel = action
self._angle_velocity = vel
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
self._update_joints()
acc = (vel - self._angle_velocity) / self.dt
reward, info = self._get_reward(acc)
info.update({"is_collided": self._is_collided})
self._steps += 1
done = self._is_collided
return self._get_obs().copy(), reward, done, info
def reset(self):
if self.random_start:
# Maybe change more than dirst seed
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
self._start_pos = self._joint_angles.copy()
else:
self._joint_angles = self._start_pos
self._generate_goal()
self._angle_velocity = self._start_vel
self._joints = np.zeros((self.n_links + 1, 2))
self._update_joints()
self._steps = 0
return self._get_obs().copy()
def _generate_goal(self):
# TODO: Maybe improve this later, this can yield quite a lot of invalid settings
total_length = np.sum(self.link_lengths)
# rejection sampled point in inner circle with 0.5*Radius
if self.initial_via_target is None:
via_target = np.array([total_length, total_length])
while np.linalg.norm(via_target) >= 0.5 * total_length:
via_target = self.np_random.uniform(low=-0.5 * total_length, high=0.5 * total_length, size=2)
else:
via_target = np.copy(self.initial_via_target)
# rejection sampled point in outer circle
if self.intitial_target is None:
goal = np.array([total_length, total_length])
while np.linalg.norm(goal) >= total_length or np.linalg.norm(goal) <= 0.5 * total_length:
goal = self.np_random.uniform(low=-total_length, high=total_length, size=2)
else:
goal = np.copy(self.intitial_target)
self._via_point = via_target
self._goal = goal
def _update_joints(self):
"""
update _joints to get new end effector position. The other links are only required for rendering.
Returns:
"""
line_points_in_taskspace = self.get_forward_kinematics(num_points_per_link=20)
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
self_collision = False
if not self.allow_self_collision:
self_collision = check_self_collision(line_points_in_taskspace)
if np.any(np.abs(self._joint_angles) > np.pi):
self_collision = True
self._is_collided = self_collision
def _get_reward(self, acc):
success = False
reward = -np.inf
if not self._is_collided:
dist = np.inf
# return intermediate reward for via point
if self._steps == 100:
dist = np.linalg.norm(self.end_effector - self._via_point)
# return reward in last time step for goal
elif self._steps == 199:
dist = np.linalg.norm(self.end_effector - self._goal)
success = dist < 0.005
else:
# Episode terminates when colliding, hence return reward
dist = np.linalg.norm(self.end_effector - self._goal)
reward = -self.collision_penalty
reward -= dist ** 2
reward -= 5e-8 * np.sum(acc ** 2)
info = {"is_success": success}
return reward, info
def _get_obs(self):
theta = self._joint_angles
return np.hstack([
np.cos(theta),
np.sin(theta),
self._angle_velocity,
self.end_effector - self._via_point,
self.end_effector - self._goal,
self._steps
])
def get_forward_kinematics(self, num_points_per_link=1):
theta = self._joint_angles[:, None]
intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
accumulated_theta = np.cumsum(theta, axis=0)
endeffector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
endeffector[0, :, 0] = x[0, :]
endeffector[0, :, 1] = y[0, :]
for i in range(1, self.n_links):
endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
return np.squeeze(endeffector + self._joints[0, :])
def render(self, mode='human'):
goal_pos = self._goal.T
via_pos = self._via_point.T
if self.fig is None:
# Create base figure once on the beginning. Afterwards only update
plt.ion()
self.fig = plt.figure()
ax = self.fig.add_subplot(1, 1, 1)
# limits
lim = np.sum(self.link_lengths) + 0.5
ax.set_xlim([-lim, lim])
ax.set_ylim([-lim, lim])
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
self.goal_point_plot, = ax.plot(goal_pos[0], goal_pos[1], 'go')
self.via_point_plot, = ax.plot(via_pos[0], via_pos[1], 'gx')
self.fig.show()
self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
if mode == "human":
# goal
if self._steps == 1:
self.goal_point_plot.set_data(goal_pos[0], goal_pos[1])
self.via_point_plot.set_data(via_pos[0], goal_pos[1])
# arm
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
self.fig.canvas.draw()
self.fig.canvas.flush_events()
elif mode == "partial":
if self._steps == 1:
# fig, ax = plt.subplots()
# Add the patch to the Axes
[plt.gca().add_patch(rect) for rect in self.patches]
# plt.pause(0.01)
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k', alpha=self._steps / 200)
# ax.plot(line_points_in_taskspace[:, 0, 0],
# line_points_in_taskspace[:, 0, 1],
# line_points_in_taskspace[:, -1, 0],
# line_points_in_taskspace[:, -1, 1], marker='o', color='k', alpha=t / 200)
lim = np.sum(self.link_lengths) + 0.5
plt.xlim([-lim, lim])
plt.ylim([-1.1, lim])
plt.pause(0.01)
elif mode == "final":
if self._steps == 199 or self._is_collided:
# fig, ax = plt.subplots()
# Add the patch to the Axes
[plt.gca().add_patch(rect) for rect in self.patches]
plt.xlim(-self.n_links, self.n_links), plt.ylim(-1, self.n_links)
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
plt.pause(0.01)
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
@property
def end_effector(self):
return self._joints[self.n_links].T
def close(self):
if self.fig is not None:
plt.close(self.fig)