fancy_gym/alr_envs/dmc/manipulation/reach/mp_wrapper.py
2021-07-30 11:59:02 +02:00

39 lines
1.2 KiB
Python

from typing import Tuple, Union
import numpy as np
from mp_env_api import MPEnvWrapper
class MPWrapper(MPEnvWrapper):
@property
def active_obs(self):
# Joint and target positions are randomized, velocities are always set to 0.
return np.hstack([
[True] * 3, # target position
[True] * 12, # sin/cos arm joint position
[True] * 6, # arm joint torques
[False] * 6, # arm joint velocities
[True] * 3, # sin/cos hand joint position
[False] * 3, # hand joint velocities
[True] * 3, # hand pinch site position
[True] * 9, # pinch site rmat
])
@property
def current_pos(self) -> Union[float, int, np.ndarray]:
return self.env.physics.named.data.qpos[:]
@property
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
return self.env.physics.named.data.qvel[:]
@property
def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]:
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
@property
def dt(self) -> Union[float, int]:
return self.env.dt