fancy_gym/alr_envs/dmc/dmc_wrapper.py
2021-12-01 15:55:38 +01:00

207 lines
7.4 KiB
Python

# Adopted from: https://github.com/denisyarats/dmc2gym/blob/master/dmc2gym/wrappers.py
# License: MIT
# Copyright (c) 2020 Denis Yarats
import collections
from typing import Any, Dict, Tuple
import numpy as np
from dm_control import manipulation, suite
from dm_env import specs
from gym import core, spaces
def _spec_to_box(spec):
def extract_min_max(s):
assert s.dtype == np.float64 or s.dtype == np.float32, f"Only float64 and float32 types are allowed, instead {s.dtype} was found"
dim = int(np.prod(s.shape))
if type(s) == specs.Array:
bound = np.inf * np.ones(dim, dtype=s.dtype)
return -bound, bound
elif type(s) == specs.BoundedArray:
zeros = np.zeros(dim, dtype=s.dtype)
return s.minimum + zeros, s.maximum + zeros
mins, maxs = [], []
for s in spec:
mn, mx = extract_min_max(s)
mins.append(mn)
maxs.append(mx)
low = np.concatenate(mins, axis=0)
high = np.concatenate(maxs, axis=0)
assert low.shape == high.shape
return spaces.Box(low, high, dtype=s.dtype)
def _flatten_obs(obs: collections.MutableMapping):
"""
Flattens an observation of type MutableMapping, e.g. a dict to a 1D array.
Args:
obs: observation to flatten
Returns: 1D array of observation
"""
if not isinstance(obs, collections.MutableMapping):
raise ValueError(f'Requires dict-like observations structure. {type(obs)} found.')
# Keep key order consistent for non OrderedDicts
keys = obs.keys() if isinstance(obs, collections.OrderedDict) else sorted(obs.keys())
obs_vals = [np.array([obs[key]]) if np.isscalar(obs[key]) else obs[key].ravel() for key in keys]
return np.concatenate(obs_vals)
class DMCWrapper(core.Env):
def __init__(
self,
domain_name: str,
task_name: str,
task_kwargs: dict = {},
visualize_reward: bool = True,
from_pixels: bool = False,
height: int = 84,
width: int = 84,
camera_id: int = 0,
frame_skip: int = 1,
environment_kwargs: dict = None,
channels_first: bool = True
):
assert 'random' in task_kwargs, 'Please specify a seed for deterministic behavior.'
self._from_pixels = from_pixels
self._height = height
self._width = width
self._camera_id = camera_id
self._frame_skip = frame_skip
self._channels_first = channels_first
# create task
if domain_name == "manipulation":
assert not from_pixels and not task_name.endswith("_vision"), \
"TODO: Vision interface for manipulation is different to suite and needs to be implemented"
self._env = manipulation.load(environment_name=task_name, seed=task_kwargs['random'])
else:
self._env = suite.load(domain_name=domain_name, task_name=task_name, task_kwargs=task_kwargs,
visualize_reward=visualize_reward, environment_kwargs=environment_kwargs)
# action and observation space
self._action_space = _spec_to_box([self._env.action_spec()])
self._observation_space = _spec_to_box(self._env.observation_spec().values())
self._last_state = None
self.viewer = None
# set seed
self.seed(seed=task_kwargs.get('random', 1))
def __getattr__(self, item):
"""Propagate only non-existent properties to wrapped env."""
if item.startswith('_'):
raise AttributeError("attempted to get missing private attribute '{}'".format(item))
if item in self.__dict__:
return getattr(self, item)
return getattr(self._env, item)
def _get_obs(self, time_step):
if self._from_pixels:
obs = self.render(
mode="rgb_array",
height=self._height,
width=self._width,
camera_id=self._camera_id
)
if self._channels_first:
obs = obs.transpose(2, 0, 1).copy()
else:
obs = _flatten_obs(time_step.observation).astype(self.observation_space.dtype)
return obs
@property
def observation_space(self):
return self._observation_space
@property
def action_space(self):
return self._action_space
@property
def dt(self):
return self._env.control_timestep() * self._frame_skip
@property
def base_step_limit(self):
"""
Returns: max_episode_steps of the underlying DMC env
"""
# Accessing private attribute because DMC does not expose time_limit or step_limit.
# Only the current time_step/time as well as the control_timestep can be accessed.
try:
return (self._env._step_limit + self._frame_skip - 1) // self._frame_skip
except AttributeError as e:
return self._env._time_limit / self.dt
def seed(self, seed=None):
self._action_space.seed(seed)
self._observation_space.seed(seed)
def step(self, action) -> Tuple[np.ndarray, float, bool, Dict[str, Any]]:
assert self._action_space.contains(action)
reward = 0
extra = {'internal_state': self._env.physics.get_state().copy()}
for _ in range(self._frame_skip):
time_step = self._env.step(action)
reward += time_step.reward or 0.
done = time_step.last()
if done:
break
self._last_state = _flatten_obs(time_step.observation)
obs = self._get_obs(time_step)
extra['discount'] = time_step.discount
return obs, reward, done, extra
def reset(self) -> np.ndarray:
time_step = self._env.reset()
self._last_state = _flatten_obs(time_step.observation)
obs = self._get_obs(time_step)
return obs
def render(self, mode='rgb_array', height=None, width=None, camera_id=0):
if self._last_state is None:
raise ValueError('Environment not ready to render. Call reset() first.')
camera_id = camera_id or self._camera_id
# assert mode == 'rgb_array', 'only support rgb_array mode, given %s' % mode
if mode == "rgb_array":
height = height or self._height
width = width or self._width
return self._env.physics.render(height=height, width=width, camera_id=camera_id)
elif mode == 'human':
if self.viewer is None:
# pylint: disable=import-outside-toplevel
# pylint: disable=g-import-not-at-top
from gym.envs.classic_control import rendering
self.viewer = rendering.SimpleImageViewer()
# Render max available buffer size. Larger is only possible by altering the XML.
img = self._env.physics.render(height=self._env.physics.model.vis.global_.offheight,
width=self._env.physics.model.vis.global_.offwidth,
camera_id=camera_id)
self.viewer.imshow(img)
return self.viewer.isopen
def close(self):
super().close()
if self.viewer is not None and self.viewer.isopen:
self.viewer.close()
@property
def reward_range(self) -> Tuple[float, float]:
reward_spec = self._env.reward_spec()
if isinstance(reward_spec, specs.BoundedArray):
return reward_spec.minimum, reward_spec.maximum
return -float('inf'), float('inf')