fancy_gym/alr_envs/classic_control/viapoint_reacher.py
Maximilian Huettenrauch e482fc09f0 wip
2021-04-21 10:45:34 +02:00

231 lines
7.4 KiB
Python

import gym
import matplotlib.pyplot as plt
import numpy as np
from alr_envs.classic_control.utils import check_self_collision
class ViaPointReacher(gym.Env):
def __init__(self, n_links, allow_self_collision=False, collision_penalty=1000):
self.num_links = n_links
self.link_lengths = np.ones((n_links, 1))
# task
self.via_point = np.ones(2)
self.goal_point = np.array((n_links, 0))
# collision
self.allow_self_collision = allow_self_collision
self.collision_penalty = collision_penalty
# state
self._joints = None
self._joint_angles = None
self._angle_velocity = None
self.start_pos = np.hstack([[np.pi / 2], np.zeros(self.num_links - 1)])
self.start_vel = np.zeros(self.num_links)
self.weight_matrix_scale = 1
self._steps = 0
self.dt = 0.01
# self.time_limit = 2
action_bound = np.pi * np.ones((self.num_links,))
state_bound = np.hstack([
[np.pi] * self.num_links, # cos
[np.pi] * self.num_links, # sin
[np.inf] * self.num_links, # velocity
[np.inf] * 2, # x-y coordinates of target distance
[np.inf] # env steps, because reward start after n steps TODO: Maybe
])
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
self.fig = None
@property
def end_effector(self):
return self._joints[self.num_links].T
def configure(self, context):
pass
def reset(self):
self._joint_angles = self.start_pos
self._angle_velocity = self.start_vel
self._joints = np.zeros((self.num_links + 1, 2))
self._update_joints()
self._steps = 0
return self._get_obs().copy()
def step(self, action: np.ndarray):
"""
a single step with an action in joint velocity space
"""
vel = action
acc = (vel - self._angle_velocity) / self.dt
self._angle_velocity = vel
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
self._update_joints()
dist_reward = 0
if not self._is_collided:
if self._steps == 100:
dist_reward = np.linalg.norm(self.end_effector - self.via_point)
elif self._steps == 199:
dist_reward = np.linalg.norm(self.end_effector - self.goal_point)
# TODO: Do we need that?
reward = - dist_reward ** 2
reward -= 5e-8 * np.sum(acc**2)
if self._is_collided:
reward -= self.collision_penalty
info = {"is_collided": self._is_collided}
self._steps += 1
# done = self._steps * self.dt > self.time_limit or self._is_collided
done = self._is_collided
return self._get_obs().copy(), reward, done, info
def _update_joints(self):
"""
update _joints to get new end effector position. The other links are only required for rendering.
Returns:
"""
line_points_in_taskspace = self.get_forward_kinematics(num_points_per_link=20)
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
self_collision = False
if not self.allow_self_collision:
self_collision = check_self_collision(line_points_in_taskspace)
if np.any(np.abs(self._joint_angles) > np.pi):
self_collision = True
self._is_collided = self_collision
def _get_obs(self):
theta = self._joint_angles
return np.hstack([
np.cos(theta),
np.sin(theta),
self._angle_velocity,
self.end_effector - self.via_point,
self.end_effector - self.goal_point,
self._steps
])
def get_forward_kinematics(self, num_points_per_link=1):
theta = self._joint_angles[:, None]
intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
accumulated_theta = np.cumsum(theta, axis=0)
endeffector = np.zeros(shape=(self.num_links, num_points_per_link, 2))
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
endeffector[0, :, 0] = x[0, :]
endeffector[0, :, 1] = y[0, :]
for i in range(1, self.num_links):
endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
return np.squeeze(endeffector + self._joints[0, :])
def render(self, mode='human'):
if self.fig is None:
self.fig = plt.figure()
# plt.ion()
# plt.pause(0.01)
else:
plt.figure(self.fig.number)
if mode == "human":
plt.cla()
plt.title(f"Iteration: {self._steps}")
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
lim = np.sum(self.link_lengths) + 0.5
plt.xlim([-lim, lim])
plt.ylim([-lim, lim])
# plt.draw()
plt.pause(1e-4) # pushes window to foreground, which is annoying.
# self.fig.canvas.flush_events()
elif mode == "partial":
if self._steps == 1:
# fig, ax = plt.subplots()
# Add the patch to the Axes
[plt.gca().add_patch(rect) for rect in self.patches]
# plt.pause(0.01)
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k', alpha=self._steps / 200)
# ax.plot(line_points_in_taskspace[:, 0, 0],
# line_points_in_taskspace[:, 0, 1],
# line_points_in_taskspace[:, -1, 0],
# line_points_in_taskspace[:, -1, 1], marker='o', color='k', alpha=t / 200)
lim = np.sum(self.link_lengths) + 0.5
plt.xlim([-lim, lim])
plt.ylim([-1.1, lim])
plt.pause(0.01)
elif mode == "final":
if self._steps == 199 or self._is_collided:
# fig, ax = plt.subplots()
# Add the patch to the Axes
[plt.gca().add_patch(rect) for rect in self.patches]
plt.xlim(-self.num_links, self.num_links), plt.ylim(-1, self.num_links)
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
plt.pause(0.01)
def close(self):
if self.fig is not None:
plt.close(self.fig)
if __name__ == '__main__':
nl = 5
render_mode = "human" # "human" or "partial" or "final"
env = ViaPointReacher(n_links=nl, allow_self_collision=False)
env.reset()
env.render(mode=render_mode)
for i in range(300):
# objective.load_result("/tmp/cma")
# test with random actions
ac = env.action_space.sample()
# ac[0] += np.pi/2
obs, rew, d, info = env.step(ac)
env.render(mode=render_mode)
print(rew)
if d:
break
env.close()