fancy_gym/alr_envs/classic_control/simple_reacher.py

214 lines
6.9 KiB
Python

from typing import Iterable, Union
import matplotlib.pyplot as plt
import numpy as np
from gym import spaces
from gym.utils import seeding
from mp_env_api.envs.mp_env import MpEnv
from mp_env_api.envs.mp_env_wrapper import MPEnvWrapper
class SimpleReacherEnv(MpEnv):
"""
Simple Reaching Task without any physics simulation.
Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions
towards the end of the trajectory.
"""
def __init__(self, n_links: int, target: Union[None, Iterable] = None, random_start: bool = True):
super().__init__()
self.link_lengths = np.ones(n_links)
self.n_links = n_links
self._dt = 0.1
self.random_start = random_start
self._joints = None
self._joint_angles = None
self._angle_velocity = None
self._start_pos = np.zeros(self.n_links)
self._start_vel = np.zeros(self.n_links)
self._target = target # provided target value
self._goal = None # updated goal value, does not change when target != None
self.max_torque = 1
self.steps_before_reward = 199
action_bound = np.ones((self.n_links,)) * self.max_torque
state_bound = np.hstack([
[np.pi] * self.n_links, # cos
[np.pi] * self.n_links, # sin
[np.inf] * self.n_links, # velocity
[np.inf] * 2, # x-y coordinates of target distance
[np.inf] # env steps, because reward start after n steps TODO: Maybe
])
self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
# containers for plotting
self.metadata = {'render.modes': ["human"]}
self.fig = None
self._steps = 0
self.seed()
@property
def dt(self) -> Union[float, int]:
return self._dt
def step(self, action: np.ndarray):
"""
A single step with action in torque space
"""
# action = self._add_action_noise(action)
ac = np.clip(action, -self.max_torque, self.max_torque)
self._angle_velocity = self._angle_velocity + self.dt * ac
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
self._update_joints()
reward, info = self._get_reward(action)
self._steps += 1
done = False
return self._get_obs().copy(), reward, done, info
def reset(self):
# TODO: maybe do initialisation more random?
# Sample only orientation of first link, i.e. the arm is always straight.
if self.random_start:
self._joint_angles = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)])
self._start_pos = self._joint_angles.copy()
else:
self._joint_angles = self._start_pos
self._generate_goal()
self._angle_velocity = self._start_vel
self._joints = np.zeros((self.n_links + 1, 2))
self._update_joints()
self._steps = 0
return self._get_obs().copy()
def _update_joints(self):
"""
update joints to get new end-effector position. The other links are only required for rendering.
Returns:
"""
angles = np.cumsum(self._joint_angles)
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
def _get_reward(self, action: np.ndarray):
diff = self.end_effector - self._goal
reward_dist = 0
if self._steps >= self.steps_before_reward:
reward_dist -= np.linalg.norm(diff)
# reward_dist = np.exp(-0.1 * diff ** 2).mean()
# reward_dist = - (diff ** 2).mean()
reward_ctrl = (action ** 2).sum()
reward = reward_dist - reward_ctrl
return reward, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl)
def _get_obs(self):
theta = self._joint_angles
return np.hstack([
np.cos(theta),
np.sin(theta),
self._angle_velocity,
self.end_effector - self._goal,
self._steps
])
def _generate_goal(self):
if self._target is None:
total_length = np.sum(self.link_lengths)
goal = np.array([total_length, total_length])
while np.linalg.norm(goal) >= total_length:
goal = self.np_random.uniform(low=-total_length, high=total_length, size=2)
else:
goal = np.copy(self._target)
self._goal = goal
def render(self, mode='human'): # pragma: no cover
if self.fig is None:
# Create base figure once on the beginning. Afterwards only update
plt.ion()
self.fig = plt.figure()
ax = self.fig.add_subplot(1, 1, 1)
# limits
lim = np.sum(self.link_lengths) + 0.5
ax.set_xlim([-lim, lim])
ax.set_ylim([-lim, lim])
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
goal_pos = self._goal.T
self.goal_point, = ax.plot(goal_pos[0], goal_pos[1], 'gx')
self.goal_dist, = ax.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--')
self.fig.show()
self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
# goal
goal_pos = self._goal.T
if self._steps == 1:
self.goal_point.set_data(goal_pos[0], goal_pos[1])
# arm
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
# distance between end effector and goal
self.goal_dist.set_data([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]])
self.fig.canvas.draw()
self.fig.canvas.flush_events()
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def close(self):
del self.fig
@property
def end_effector(self):
return self._joints[self.n_links].T
class SimpleReacherMPWrapper(MPEnvWrapper):
@property
def active_obs(self):
return np.hstack([
[self.env.random_start] * self.env.n_links, # cos
[self.env.random_start] * self.env.n_links, # sin
[self.env.random_start] * self.env.n_links, # velocity
[True] * 2, # x-y coordinates of target distance
[False] # env steps
])
@property
def start_pos(self):
return self._start_pos
@property
def goal_pos(self):
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
@property
def dt(self) -> Union[float, int]:
return self.env.dt