188 lines
6.1 KiB
Python
188 lines
6.1 KiB
Python
from typing import Iterable, Union
|
|
|
|
import gym
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from gym import spaces
|
|
from gym.utils import seeding
|
|
|
|
|
|
class SimpleReacherEnv(gym.Env):
|
|
"""
|
|
Simple Reaching Task without any physics simulation.
|
|
Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions
|
|
towards the end of the trajectory.
|
|
"""
|
|
|
|
def __init__(self, n_links: int, target: Union[None, Iterable] = None, random_start: bool = True):
|
|
super().__init__()
|
|
self.link_lengths = np.ones(n_links)
|
|
self.n_links = n_links
|
|
self._dt = 0.1
|
|
|
|
self.random_start = random_start
|
|
|
|
self._joints = None
|
|
self._joint_angles = None
|
|
self._angle_velocity = None
|
|
self._start_pos = np.zeros(self.n_links)
|
|
self._start_vel = np.zeros(self.n_links)
|
|
|
|
self._target = target # provided target value
|
|
self._goal = None # updated goal value, does not change when target != None
|
|
|
|
self.max_torque = 1
|
|
self.steps_before_reward = 199
|
|
|
|
action_bound = np.ones((self.n_links,)) * self.max_torque
|
|
state_bound = np.hstack([
|
|
[np.pi] * self.n_links, # cos
|
|
[np.pi] * self.n_links, # sin
|
|
[np.inf] * self.n_links, # velocity
|
|
[np.inf] * 2, # x-y coordinates of target distance
|
|
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
|
])
|
|
self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
|
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
|
|
|
# containers for plotting
|
|
self.metadata = {'render.modes': ["human"]}
|
|
self.fig = None
|
|
|
|
self._steps = 0
|
|
self.seed()
|
|
|
|
@property
|
|
def dt(self) -> Union[float, int]:
|
|
return self._dt
|
|
|
|
def step(self, action: np.ndarray):
|
|
"""
|
|
A single step with action in torque space
|
|
"""
|
|
|
|
# action = self._add_action_noise(action)
|
|
ac = np.clip(action, -self.max_torque, self.max_torque)
|
|
|
|
self._angle_velocity = self._angle_velocity + self.dt * ac
|
|
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
|
self._update_joints()
|
|
|
|
reward, info = self._get_reward(action)
|
|
|
|
self._steps += 1
|
|
done = False
|
|
|
|
return self._get_obs().copy(), reward, done, info
|
|
|
|
def reset(self):
|
|
|
|
# TODO: maybe do initialisation more random?
|
|
# Sample only orientation of first link, i.e. the arm is always straight.
|
|
if self.random_start:
|
|
self._joint_angles = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)])
|
|
self._start_pos = self._joint_angles.copy()
|
|
else:
|
|
self._joint_angles = self._start_pos
|
|
|
|
self._generate_goal()
|
|
|
|
self._angle_velocity = self._start_vel
|
|
self._joints = np.zeros((self.n_links + 1, 2))
|
|
self._update_joints()
|
|
self._steps = 0
|
|
|
|
return self._get_obs().copy()
|
|
|
|
def _update_joints(self):
|
|
"""
|
|
update joints to get new end-effector position. The other links are only required for rendering.
|
|
Returns:
|
|
|
|
"""
|
|
angles = np.cumsum(self._joint_angles)
|
|
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
|
|
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
|
|
|
|
def _get_reward(self, action: np.ndarray):
|
|
diff = self.end_effector - self._goal
|
|
reward_dist = 0
|
|
|
|
if self._steps >= self.steps_before_reward:
|
|
reward_dist -= np.linalg.norm(diff)
|
|
# reward_dist = np.exp(-0.1 * diff ** 2).mean()
|
|
# reward_dist = - (diff ** 2).mean()
|
|
|
|
reward_ctrl = (action ** 2).sum()
|
|
reward = reward_dist - reward_ctrl
|
|
return reward, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl)
|
|
|
|
def _get_obs(self):
|
|
theta = self._joint_angles
|
|
return np.hstack([
|
|
np.cos(theta),
|
|
np.sin(theta),
|
|
self._angle_velocity,
|
|
self.end_effector - self._goal,
|
|
self._steps
|
|
])
|
|
|
|
def _generate_goal(self):
|
|
|
|
if self._target is None:
|
|
|
|
total_length = np.sum(self.link_lengths)
|
|
goal = np.array([total_length, total_length])
|
|
while np.linalg.norm(goal) >= total_length:
|
|
goal = self.np_random.uniform(low=-total_length, high=total_length, size=2)
|
|
else:
|
|
goal = np.copy(self._target)
|
|
|
|
self._goal = goal
|
|
|
|
def render(self, mode='human'): # pragma: no cover
|
|
if self.fig is None:
|
|
# Create base figure once on the beginning. Afterwards only update
|
|
plt.ion()
|
|
self.fig = plt.figure()
|
|
ax = self.fig.add_subplot(1, 1, 1)
|
|
|
|
# limits
|
|
lim = np.sum(self.link_lengths) + 0.5
|
|
ax.set_xlim([-lim, lim])
|
|
ax.set_ylim([-lim, lim])
|
|
|
|
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
|
goal_pos = self._goal.T
|
|
self.goal_point, = ax.plot(goal_pos[0], goal_pos[1], 'gx')
|
|
self.goal_dist, = ax.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--')
|
|
|
|
self.fig.show()
|
|
|
|
self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
|
|
|
|
# goal
|
|
goal_pos = self._goal.T
|
|
if self._steps == 1:
|
|
self.goal_point.set_data(goal_pos[0], goal_pos[1])
|
|
|
|
# arm
|
|
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
|
|
|
|
# distance between end effector and goal
|
|
self.goal_dist.set_data([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]])
|
|
|
|
self.fig.canvas.draw()
|
|
self.fig.canvas.flush_events()
|
|
|
|
def seed(self, seed=None):
|
|
self.np_random, seed = seeding.np_random(seed)
|
|
return [seed]
|
|
|
|
def close(self):
|
|
del self.fig
|
|
|
|
@property
|
|
def end_effector(self):
|
|
return self._joints[self.n_links].T
|