fancy_gym/alr_envs/utils/mp_env_async_sampler.py
2021-05-17 17:58:33 +02:00

115 lines
3.8 KiB
Python

import gym
from gym.vector.async_vector_env import AsyncVectorEnv
import numpy as np
from _collections import defaultdict
def make_env(env_id, rank, seed=0, **env_kwargs):
env = gym.make(env_id, **env_kwargs)
env.seed(seed + rank)
return lambda: env
def split_array(ary, size):
n_samples = len(ary)
if n_samples < size:
tmp = np.zeros((size, ary.shape[1]))
tmp[0:n_samples] = ary
return [tmp]
elif n_samples == size:
return [ary]
else:
repeat = int(np.ceil(n_samples / size))
split = [k * size for k in range(1, repeat)]
sub_arys = np.split(ary, split)
if n_samples % size != 0:
tmp = np.zeros_like(sub_arys[0])
last = sub_arys[-1]
tmp[0: len(last)] = last
sub_arys[-1] = tmp
return sub_arys
def _flatten_list(l):
assert isinstance(l, (list, tuple))
assert len(l) > 0
assert all([len(l_) > 0 for l_ in l])
return [l__ for l_ in l for l__ in l_]
class AlrMpEnvSampler:
"""
An asynchronous sampler for non contextual MPWrapper environments. A sampler object can be called with a set of
parameters and returns the corresponding final obs, rewards, dones and info dicts.
"""
def __init__(self, env_id, num_envs, seed=0, **env_kwargs):
self.num_envs = num_envs
self.env = AsyncVectorEnv([make_env(env_id, seed, i, **env_kwargs) for i in range(num_envs)])
def __call__(self, params):
params = np.atleast_2d(params)
n_samples = params.shape[0]
split_params = split_array(params, self.num_envs)
vals = defaultdict(list)
for p in split_params:
self.env.reset()
obs, reward, done, info = self.env.step(p)
vals['obs'].append(obs)
vals['reward'].append(reward)
vals['done'].append(done)
vals['info'].append(info)
# do not return values above threshold
return np.vstack(vals['obs'])[:n_samples], np.hstack(vals['reward'])[:n_samples],\
_flatten_list(vals['done'])[:n_samples], _flatten_list(vals['info'])[:n_samples]
class AlrContextualMpEnvSampler:
"""
An asynchronous sampler for contextual MPWrapper environments. A sampler object can be called with a set of
parameters and returns the corresponding final obs, rewards, dones and info dicts.
"""
def __init__(self, env_id, num_envs, seed=0, **env_kwargs):
self.num_envs = num_envs
self.env = AsyncVectorEnv([make_env(env_id, seed, i, **env_kwargs) for i in range(num_envs)])
def __call__(self, dist, n_samples):
repeat = int(np.ceil(n_samples / self.env.num_envs))
vals = defaultdict(list)
for i in range(repeat):
new_contexts = self.env.reset()
vals['new_contexts'].append(new_contexts)
new_samples, new_contexts = dist.sample(new_contexts)
vals['new_samples'].append(new_samples)
obs, reward, done, info = self.env.step(new_samples)
vals['obs'].append(obs)
vals['reward'].append(reward)
vals['done'].append(done)
vals['info'].append(info)
# do not return values above threshold
return np.vstack(vals['new_samples'])[:n_samples], np.vstack(vals['new_contexts'])[:n_samples], \
np.vstack(vals['obs'])[:n_samples], np.hstack(vals['reward'])[:n_samples], \
_flatten_list(vals['done'])[:n_samples], _flatten_list(vals['info'])[:n_samples]
if __name__ == "__main__":
env_name = "alr_envs:ALRBallInACupSimpleDMP-v0"
n_cpu = 8
dim = 15
n_samples = 10
sampler = AlrMpEnvSampler(env_name, num_envs=n_cpu)
thetas = np.random.randn(n_samples, dim) # usually form a search distribution
_, rewards, __, ___ = sampler(thetas)
print(rewards)