144 lines
5.4 KiB
Python
144 lines
5.4 KiB
Python
from itertools import chain
|
|
from typing import Tuple, Type, Union, Optional
|
|
|
|
import gym
|
|
import numpy as np
|
|
import pytest
|
|
from gym import register
|
|
from gym.core import ActType, ObsType
|
|
|
|
import fancy_gym
|
|
from fancy_gym.black_box.raw_interface_wrapper import RawInterfaceWrapper
|
|
from fancy_gym.utils.time_aware_observation import TimeAwareObservation
|
|
|
|
SEED = 1
|
|
ENV_IDS = ['Reacher5d-v0', 'dmc:ball_in_cup-catch', 'metaworld:reach-v2', 'Reacher-v2']
|
|
WRAPPERS = [fancy_gym.envs.mujoco.reacher.MPWrapper, fancy_gym.dmc.suite.ball_in_cup.MPWrapper,
|
|
fancy_gym.meta.goal_object_change_mp_wrapper.MPWrapper, fancy_gym.open_ai.mujoco.reacher_v2.MPWrapper]
|
|
ALL_MP_ENVS = chain(*fancy_gym.ALL_MOVEMENT_PRIMITIVE_ENVIRONMENTS.values())
|
|
|
|
|
|
class ToyEnv(gym.Env):
|
|
observation_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64)
|
|
action_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64)
|
|
dt = 0.02
|
|
|
|
def reset(self, *, seed: Optional[int] = None, return_info: bool = False,
|
|
options: Optional[dict] = None) -> Union[ObsType, Tuple[ObsType, dict]]:
|
|
return np.array([-1])
|
|
|
|
def step(self, action: ActType) -> Tuple[ObsType, float, bool, dict]:
|
|
return np.array([-1]), 1, False, {}
|
|
|
|
def render(self, mode="human"):
|
|
pass
|
|
|
|
|
|
class ToyWrapper(RawInterfaceWrapper):
|
|
|
|
@property
|
|
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
|
return np.ones(self.action_space.shape)
|
|
|
|
@property
|
|
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
|
return np.zeros(self.action_space.shape)
|
|
|
|
|
|
@pytest.fixture(scope="session", autouse=True)
|
|
def setup():
|
|
register(
|
|
id=f'toy-v0',
|
|
entry_point='test.test_black_box:ToyEnv',
|
|
max_episode_steps=50,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
|
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
|
|
@pytest.mark.parametrize('add_time_aware_wrapper_before', [True, False])
|
|
def test_learn_sub_trajectories(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]],
|
|
add_time_aware_wrapper_before: bool):
|
|
env_id, wrapper_class = env_wrap
|
|
env_step = TimeAwareObservation(fancy_gym.make(env_id, SEED))
|
|
wrappers = [wrapper_class]
|
|
|
|
# has time aware wrapper
|
|
if add_time_aware_wrapper_before:
|
|
wrappers += [TimeAwareObservation]
|
|
|
|
env = fancy_gym.make_bb(env_id, [wrapper_class], {'learn_sub_trajectories': True, 'verbose': 2},
|
|
{'trajectory_generator_type': mp_type},
|
|
{'controller_type': 'motor'},
|
|
{'phase_generator_type': 'exp'},
|
|
{'basis_generator_type': 'rbf'}, seed=SEED)
|
|
|
|
assert env.learn_sub_trajectories
|
|
assert env.traj_gen.learn_tau
|
|
# This also verifies we are not adding the TimeAwareObservationWrapper twice
|
|
assert env.observation_space == env_step.observation_space
|
|
|
|
d = True
|
|
|
|
for i in range(25):
|
|
if d:
|
|
env.reset()
|
|
action = env.action_space.sample()
|
|
obs, r, d, info = env.step(action)
|
|
|
|
length = info['trajectory_length']
|
|
|
|
if not d:
|
|
assert length == np.round(action[0] / env.dt)
|
|
assert length == np.round(env.traj_gen.tau.numpy() / env.dt)
|
|
else:
|
|
# When done trajectory could be shorter due to termination.
|
|
assert length <= np.round(action[0] / env.dt)
|
|
assert length <= np.round(env.traj_gen.tau.numpy() / env.dt)
|
|
|
|
|
|
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
|
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
|
|
@pytest.mark.parametrize('add_time_aware_wrapper_before', [True, False])
|
|
@pytest.mark.parametrize('replanning_time', [10, 100, 1000])
|
|
def test_replanning_time(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]],
|
|
add_time_aware_wrapper_before: bool, replanning_time: int):
|
|
env_id, wrapper_class = env_wrap
|
|
env_step = TimeAwareObservation(fancy_gym.make(env_id, SEED))
|
|
wrappers = [wrapper_class]
|
|
|
|
# has time aware wrapper
|
|
if add_time_aware_wrapper_before:
|
|
wrappers += [TimeAwareObservation]
|
|
|
|
replanning_schedule = lambda c_pos, c_vel, obs, c_action, t: t % replanning_time == 0
|
|
|
|
env = fancy_gym.make_bb(env_id, [wrapper_class], {'replanning_schedule': replanning_schedule, 'verbose': 2},
|
|
{'trajectory_generator_type': mp_type},
|
|
{'controller_type': 'motor'},
|
|
{'phase_generator_type': 'exp'},
|
|
{'basis_generator_type': 'rbf'}, seed=SEED)
|
|
|
|
assert env.do_replanning
|
|
assert env.replanning_schedule
|
|
# This also verifies we are not adding the TimeAwareObservationWrapper twice
|
|
assert env.observation_space == env_step.observation_space
|
|
|
|
env.reset()
|
|
|
|
episode_steps = env_step.spec.max_episode_steps // replanning_time
|
|
# Make 3 episodes, total steps depend on the replanning steps
|
|
for i in range(3 * episode_steps):
|
|
action = env.action_space.sample()
|
|
obs, r, d, info = env.step(action)
|
|
|
|
length = info['trajectory_length']
|
|
|
|
if d:
|
|
# Check if number of steps until termination match the replanning interval
|
|
print(d, (i + 1), episode_steps)
|
|
assert (i + 1) % episode_steps == 0
|
|
env.reset()
|
|
|
|
assert replanning_schedule(None, None, None, None, length)
|