81 lines
2.7 KiB
Plaintext
81 lines
2.7 KiB
Plaintext
|
import pytest
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
from fancy_rl import VLEARN
|
||
|
import gymnasium as gym
|
||
|
|
||
|
@pytest.fixture
|
||
|
def simple_env():
|
||
|
return gym.make('CartPole-v1')
|
||
|
|
||
|
def test_vlearn_instantiation():
|
||
|
vlearn = VLEARN("CartPole-v1")
|
||
|
assert isinstance(vlearn, VLEARN)
|
||
|
|
||
|
@pytest.mark.parametrize("learning_rate", [1e-4, 3e-4, 1e-3])
|
||
|
@pytest.mark.parametrize("n_steps", [1024, 2048])
|
||
|
@pytest.mark.parametrize("batch_size", [32, 64, 128])
|
||
|
@pytest.mark.parametrize("gamma", [0.95, 0.99])
|
||
|
@pytest.mark.parametrize("mean_bound", [0.05, 0.1])
|
||
|
@pytest.mark.parametrize("cov_bound", [0.0005, 0.001])
|
||
|
def test_vlearn_initialization_with_different_hps(learning_rate, n_steps, batch_size, gamma, mean_bound, cov_bound):
|
||
|
vlearn = VLEARN(
|
||
|
"CartPole-v1",
|
||
|
learning_rate=learning_rate,
|
||
|
n_steps=n_steps,
|
||
|
batch_size=batch_size,
|
||
|
gamma=gamma,
|
||
|
mean_bound=mean_bound,
|
||
|
cov_bound=cov_bound
|
||
|
)
|
||
|
assert vlearn.learning_rate == learning_rate
|
||
|
assert vlearn.n_steps == n_steps
|
||
|
assert vlearn.batch_size == batch_size
|
||
|
assert vlearn.gamma == gamma
|
||
|
assert vlearn.mean_bound == mean_bound
|
||
|
assert vlearn.cov_bound == cov_bound
|
||
|
|
||
|
def test_vlearn_predict(simple_env):
|
||
|
vlearn = VLEARN("CartPole-v1")
|
||
|
obs, _ = simple_env.reset()
|
||
|
action, _ = vlearn.predict(obs)
|
||
|
assert isinstance(action, np.ndarray)
|
||
|
assert action.shape == simple_env.action_space.shape
|
||
|
|
||
|
def test_vlearn_learn():
|
||
|
vlearn = VLEARN("CartPole-v1", n_steps=64, batch_size=32)
|
||
|
env = gym.make("CartPole-v1")
|
||
|
obs, _ = env.reset()
|
||
|
for _ in range(64):
|
||
|
action, _ = vlearn.predict(obs)
|
||
|
next_obs, reward, done, truncated, _ = env.step(action)
|
||
|
vlearn.store_transition(obs, action, reward, done, next_obs)
|
||
|
obs = next_obs
|
||
|
if done or truncated:
|
||
|
obs, _ = env.reset()
|
||
|
|
||
|
loss = vlearn.learn()
|
||
|
assert isinstance(loss, dict)
|
||
|
assert "policy_loss" in loss
|
||
|
assert "value_loss" in loss
|
||
|
|
||
|
def test_vlearn_training(simple_env):
|
||
|
vlearn = VLEARN("CartPole-v1", total_timesteps=10000)
|
||
|
|
||
|
initial_performance = evaluate_policy(vlearn, simple_env)
|
||
|
vlearn.train()
|
||
|
final_performance = evaluate_policy(vlearn, simple_env)
|
||
|
|
||
|
assert final_performance > initial_performance, "VLearn should improve performance after training"
|
||
|
|
||
|
def evaluate_policy(policy, env, n_eval_episodes=10):
|
||
|
total_reward = 0
|
||
|
for _ in range(n_eval_episodes):
|
||
|
obs, _ = env.reset()
|
||
|
done = False
|
||
|
while not done:
|
||
|
action, _ = policy.predict(obs)
|
||
|
obs, reward, terminated, truncated, _ = env.step(action)
|
||
|
total_reward += reward
|
||
|
done = terminated or truncated
|
||
|
return total_reward / n_eval_episodes
|