Refactor
This commit is contained in:
parent
0bf748869a
commit
015f1e256a
@ -1,6 +1,9 @@
|
||||
from fancy_rl.ppo import PPO
|
||||
from fancy_rl.policy import MLPPolicy
|
||||
from fancy_rl.loggers import TerminalLogger, WandbLogger
|
||||
from fancy_rl.utils import make_env
|
||||
import gymnasium
|
||||
try:
|
||||
import fancy_gym
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
__all__ = ["PPO", "MLPPolicy", "TerminalLogger", "WandbLogger", "make_env"]
|
||||
from fancy_rl.ppo import PPO
|
||||
|
||||
__all__ = ["PPO"]
|
@ -1,18 +1,13 @@
|
||||
import torch
|
||||
from abc import ABC, abstractmethod
|
||||
from torchrl.record.loggers import Logger
|
||||
from torch.optim import Adam
|
||||
import gymnasium as gym
|
||||
from torchrl.collectors import SyncDataCollector
|
||||
from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
|
||||
from torchrl.data.replay_buffers.samplers import SamplerWithoutReplacement
|
||||
from torchrl.envs import ExplorationType, set_exploration_type
|
||||
from torchrl.envs.libs.gym import GymWrapper
|
||||
from torchrl.envs import ExplorationType, set_exploration_type
|
||||
from torchrl.record import VideoRecorder
|
||||
import gymnasium as gym
|
||||
try:
|
||||
import fancy_gym
|
||||
except ImportError:
|
||||
pass
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class OnPolicy(ABC):
|
||||
def __init__(
|
||||
@ -20,6 +15,7 @@ class OnPolicy(ABC):
|
||||
policy,
|
||||
env_spec,
|
||||
loggers,
|
||||
optimizers,
|
||||
learning_rate,
|
||||
n_steps,
|
||||
batch_size,
|
||||
@ -41,6 +37,7 @@ class OnPolicy(ABC):
|
||||
self.env_spec = env_spec
|
||||
self.env_spec_eval = env_spec_eval if env_spec_eval is not None else env_spec
|
||||
self.loggers = loggers
|
||||
self.optimizers = optimizers
|
||||
self.learning_rate = learning_rate
|
||||
self.n_steps = n_steps
|
||||
self.batch_size = batch_size
|
||||
@ -90,6 +87,15 @@ class OnPolicy(ABC):
|
||||
raise ValueError("env_spec must be a string or a callable that returns an environment.")
|
||||
return env
|
||||
|
||||
def train_step(self, batch):
|
||||
for optimizer in self.optimizers.values():
|
||||
optimizer.zero_grad()
|
||||
loss = self.loss_module(batch)
|
||||
loss.backward()
|
||||
for optimizer in self.optimizers.values():
|
||||
optimizer.step()
|
||||
return loss
|
||||
|
||||
def train(self):
|
||||
collected_frames = 0
|
||||
|
||||
@ -136,10 +142,6 @@ class OnPolicy(ABC):
|
||||
for logger in self.loggers:
|
||||
logger.log_scalar({"eval_avg_return": avg_return}, step=epoch)
|
||||
|
||||
@abstractmethod
|
||||
def train_step(self, batch):
|
||||
pass
|
||||
|
||||
def dump_video(module):
|
||||
if isinstance(module, VideoRecorder):
|
||||
module.dump()
|
||||
|
@ -1,71 +1,59 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.distributions import Categorical, Normal
|
||||
import gymnasium as gym
|
||||
import torch.nn as nn
|
||||
from tensordict.nn import TensorDictModule
|
||||
from torchrl.modules import MLP
|
||||
from tensordict.nn.distributions import NormalParamExtractor
|
||||
|
||||
class Actor(nn.Module):
|
||||
def __init__(self, observation_space, action_space, hidden_sizes=[64, 64], activation_fn=nn.ReLU):
|
||||
super().__init__()
|
||||
self.continuous = isinstance(action_space, gym.spaces.Box)
|
||||
input_dim = observation_space.shape[-1]
|
||||
if self.continuous:
|
||||
output_dim = action_space.shape[-1]
|
||||
class SharedModule(TensorDictModule):
|
||||
def __init__(self, obs_space, hidden_sizes, activation_fn, device):
|
||||
if hidden_sizes:
|
||||
shared_module = MLP(
|
||||
in_features=obs_space.shape[-1],
|
||||
out_features=hidden_sizes[-1],
|
||||
num_cells=hidden_sizes,
|
||||
activation_class=getattr(nn, activation_fn),
|
||||
device=device
|
||||
)
|
||||
out_features = hidden_sizes[-1]
|
||||
else:
|
||||
output_dim = action_space.n
|
||||
shared_module = nn.Identity()
|
||||
out_features = obs_space.shape[-1]
|
||||
|
||||
layers = []
|
||||
last_dim = input_dim
|
||||
for size in hidden_sizes:
|
||||
layers.append(nn.Linear(last_dim, size))
|
||||
layers.append(activation_fn())
|
||||
last_dim = size
|
||||
super().__init__(
|
||||
module=shared_module,
|
||||
in_keys=["observation"],
|
||||
out_keys=["shared"],
|
||||
)
|
||||
self.out_features = out_features
|
||||
|
||||
if self.continuous:
|
||||
self.mu_layer = nn.Linear(last_dim, output_dim)
|
||||
self.log_std_layer = nn.Linear(last_dim, output_dim)
|
||||
else:
|
||||
layers.append(nn.Linear(last_dim, output_dim))
|
||||
self.model = nn.Sequential(*layers)
|
||||
class Actor(TensorDictModule):
|
||||
def __init__(self, shared_module, act_space, hidden_sizes, activation_fn, device):
|
||||
actor_module = nn.Sequential(
|
||||
MLP(
|
||||
in_features=shared_module.out_features,
|
||||
out_features=act_space.shape[-1] * 2,
|
||||
num_cells=hidden_sizes,
|
||||
activation_class=getattr(nn, activation_fn),
|
||||
device=device
|
||||
),
|
||||
NormalParamExtractor(),
|
||||
).to(device)
|
||||
super().__init__(
|
||||
module=actor_module,
|
||||
in_keys=["shared"],
|
||||
out_keys=["loc", "scale"],
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
if self.continuous:
|
||||
mu = self.mu_layer(x)
|
||||
log_std = self.log_std_layer(x)
|
||||
return mu, log_std.exp()
|
||||
else:
|
||||
return self.model(x)
|
||||
|
||||
def act(self, observation, deterministic=False):
|
||||
with torch.no_grad():
|
||||
if self.continuous:
|
||||
mu, std = self.forward(observation)
|
||||
if deterministic:
|
||||
action = mu
|
||||
else:
|
||||
action_dist = Normal(mu, std)
|
||||
action = action_dist.sample()
|
||||
else:
|
||||
logits = self.forward(observation)
|
||||
if deterministic:
|
||||
action = logits.argmax(dim=-1)
|
||||
else:
|
||||
action_dist = Categorical(logits=logits)
|
||||
action = action_dist.sample()
|
||||
return action
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, observation_space, hidden_sizes=[64, 64], activation_fn=nn.ReLU):
|
||||
super().__init__()
|
||||
input_dim = observation_space.shape[-1]
|
||||
|
||||
layers = []
|
||||
last_dim = input_dim
|
||||
for size in hidden_sizes:
|
||||
layers.append(nn.Linear(last_dim, size))
|
||||
layers.append(activation_fn())
|
||||
last_dim = size
|
||||
layers.append(nn.Linear(last_dim, 1))
|
||||
self.model = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x).squeeze(-1)
|
||||
class Critic(TensorDictModule):
|
||||
def __init__(self, shared_module, hidden_sizes, activation_fn, device):
|
||||
critic_module = MLP(
|
||||
in_features=shared_module.out_features,
|
||||
out_features=1,
|
||||
num_cells=hidden_sizes,
|
||||
activation_class=getattr(nn, activation_fn),
|
||||
device=device
|
||||
).to(device)
|
||||
super().__init__(
|
||||
module=critic_module,
|
||||
in_keys=["shared"],
|
||||
out_keys=["state_value"],
|
||||
)
|
||||
|
@ -1,11 +1,9 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torchrl.modules import ActorValueOperator, ProbabilisticActor
|
||||
from torchrl.objectives import ClipPPOLoss
|
||||
from torchrl.objectives.value.advantages import GAE
|
||||
from torchrl.record.loggers import get_logger
|
||||
from on_policy import OnPolicy
|
||||
from policy import Actor, Critic
|
||||
import gymnasium as gym
|
||||
from fancy_rl.on_policy import OnPolicy
|
||||
from fancy_rl.policy import Actor, Critic, SharedModule
|
||||
|
||||
class PPO(OnPolicy):
|
||||
def __init__(
|
||||
@ -14,8 +12,9 @@ class PPO(OnPolicy):
|
||||
loggers=None,
|
||||
actor_hidden_sizes=[64, 64],
|
||||
critic_hidden_sizes=[64, 64],
|
||||
actor_activation_fn="ReLU",
|
||||
critic_activation_fn="ReLU",
|
||||
actor_activation_fn="Tanh",
|
||||
critic_activation_fn="Tanh",
|
||||
shared_stem_sizes=[64],
|
||||
learning_rate=3e-4,
|
||||
n_steps=2048,
|
||||
batch_size=64,
|
||||
@ -33,21 +32,45 @@ class PPO(OnPolicy):
|
||||
env_spec_eval=None,
|
||||
eval_episodes=10,
|
||||
):
|
||||
device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Initialize environment to get observation and action space sizes
|
||||
env = self.make_env(env_spec)
|
||||
self.env_spec = env_spec
|
||||
env = self.make_env()
|
||||
obs_space = env.observation_space
|
||||
act_space = env.action_space
|
||||
|
||||
actor_activation_fn = getattr(nn, actor_activation_fn)
|
||||
critic_activation_fn = getattr(nn, critic_activation_fn)
|
||||
# Define the shared, actor, and critic modules
|
||||
self.shared_module = SharedModule(obs_space, shared_stem_sizes, actor_activation_fn, device)
|
||||
self.actor = Actor(self.shared_module, act_space, actor_hidden_sizes, actor_activation_fn, device)
|
||||
self.critic = Critic(self.shared_module, critic_hidden_sizes, critic_activation_fn, device)
|
||||
|
||||
self.actor = Actor(obs_space, act_space, hidden_sizes=actor_hidden_sizes, activation_fn=actor_activation_fn)
|
||||
self.critic = Critic(obs_space, hidden_sizes=critic_hidden_sizes, activation_fn=critic_activation_fn)
|
||||
# Combine into an ActorValueOperator
|
||||
self.ac_module = ActorValueOperator(
|
||||
self.shared_module,
|
||||
self.actor,
|
||||
self.critic
|
||||
)
|
||||
|
||||
# Define the policy as a ProbabilisticActor
|
||||
self.policy = ProbabilisticActor(
|
||||
module=self.ac_module.get_policy_operator(),
|
||||
in_keys=["loc", "scale"],
|
||||
out_keys=["action"],
|
||||
distribution_class=torch.distributions.Normal,
|
||||
return_log_prob=True
|
||||
)
|
||||
|
||||
optimizers = {
|
||||
"actor": torch.optim.Adam(self.actor.parameters(), lr=learning_rate),
|
||||
"critic": torch.optim.Adam(self.critic.parameters(), lr=learning_rate)
|
||||
}
|
||||
|
||||
super().__init__(
|
||||
policy=self.actor,
|
||||
policy=self.policy,
|
||||
env_spec=env_spec,
|
||||
loggers=loggers,
|
||||
optimizers=optimizers,
|
||||
learning_rate=learning_rate,
|
||||
n_steps=n_steps,
|
||||
batch_size=batch_size,
|
||||
@ -82,15 +105,3 @@ class PPO(OnPolicy):
|
||||
critic_coef=self.critic_coef,
|
||||
normalize_advantage=self.normalize_advantage,
|
||||
)
|
||||
|
||||
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=self.learning_rate)
|
||||
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=self.learning_rate)
|
||||
|
||||
def train_step(self, batch):
|
||||
self.actor_optimizer.zero_grad()
|
||||
self.critic_optimizer.zero_grad()
|
||||
loss = self.loss_module(batch)
|
||||
loss.backward()
|
||||
self.actor_optimizer.step()
|
||||
self.critic_optimizer.step()
|
||||
return loss
|
||||
|
Loading…
Reference in New Issue
Block a user