diff --git a/README.md b/README.md index c6e2971..db1fc87 100644 --- a/README.md +++ b/README.md @@ -30,8 +30,7 @@ Fancy RL provides two main components: model.train() ``` - For environments, you can pass any [gymnasium](https://gymnasium.farama.org/) or [Fancy Gym](https://alrhub.github.io/fancy_gym/) environment ID as a string, a function returning a gymnasium environment, or an already instantiated gymnasium environment. Future plans include supporting other torchrl environments. - Check 'example/example.py' for a more complete usage example. + For environments, you can pass any [gymnasium](https://gymnasium.farama.org/) or [Fancy Gym](https://alrhub.github.io/fancy_gym/) environment ID as a string, a function returning a gymnasium or torchrl environment, an already instantiated gymnasium or torchrl environment, or a dict that will be passed to gymnasium.make. Check 'example/example.py' for a more complete usage example. 2. **Additional Modules for TRPL**: Designed to integrate with torchrl's primitives-first approach, these modules are ideal for building custom algorithms with precise trust region projections. diff --git a/fancy_rl/on_policy.py b/fancy_rl/on_policy.py index c090b48..556ffcb 100644 --- a/fancy_rl/on_policy.py +++ b/fancy_rl/on_policy.py @@ -83,6 +83,8 @@ class OnPolicy(ABC): env = env_spec() if isinstance(env, gym.Env): env = GymWrapper(env) + elif isinstance(env, gym.Env): + env = GymWrapper(env) else: raise ValueError("env_spec must be a string or a callable that returns an environment.") return env