Started implementation of TRPL loss objective module
This commit is contained in:
parent
b34224f189
commit
3931f5e31b
1
fancy_rl/objectives/__init__.py
Normal file
1
fancy_rl/objectives/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from fancy_rl.objectives.trpl import TRPLLoss
|
201
fancy_rl/objectives/trpl.py
Normal file
201
fancy_rl/objectives/trpl.py
Normal file
@ -0,0 +1,201 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import contextlib
|
||||
|
||||
import math
|
||||
from copy import deepcopy
|
||||
from dataclasses import dataclass
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from tensordict import TensorDict, TensorDictBase, TensorDictParams
|
||||
from tensordict.nn import (
|
||||
dispatch,
|
||||
ProbabilisticTensorDictModule,
|
||||
ProbabilisticTensorDictSequential,
|
||||
TensorDictModule,
|
||||
)
|
||||
from tensordict.utils import NestedKey
|
||||
from torch import distributions as d
|
||||
|
||||
from torchrl.objectives.common import LossModule
|
||||
|
||||
from torchrl.objectives.utils import (
|
||||
_cache_values,
|
||||
_clip_value_loss,
|
||||
_GAMMA_LMBDA_DEPREC_ERROR,
|
||||
_reduce,
|
||||
default_value_kwargs,
|
||||
distance_loss,
|
||||
ValueEstimators,
|
||||
)
|
||||
from torchrl.objectives.value import (
|
||||
GAE,
|
||||
TD0Estimator,
|
||||
TD1Estimator,
|
||||
TDLambdaEstimator,
|
||||
VTrace,
|
||||
)
|
||||
|
||||
from torchrl.objectives.ppo import PPOLoss
|
||||
|
||||
class TRPLLoss(PPOLoss):
|
||||
@dataclass
|
||||
class _AcceptedKeys:
|
||||
"""Maintains default values for all configurable tensordict keys.
|
||||
|
||||
This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their
|
||||
default values
|
||||
|
||||
Attributes:
|
||||
advantage (NestedKey): The input tensordict key where the advantage is expected.
|
||||
Will be used for the underlying value estimator. Defaults to ``"advantage"``.
|
||||
value_target (NestedKey): The input tensordict key where the target state value is expected.
|
||||
Will be used for the underlying value estimator Defaults to ``"value_target"``.
|
||||
value (NestedKey): The input tensordict key where the state value is expected.
|
||||
Will be used for the underlying value estimator. Defaults to ``"state_value"``.
|
||||
sample_log_prob (NestedKey): The input tensordict key where the
|
||||
sample log probability is expected. Defaults to ``"sample_log_prob"``.
|
||||
action (NestedKey): The input tensordict key where the action is expected.
|
||||
Defaults to ``"action"``.
|
||||
reward (NestedKey): The input tensordict key where the reward is expected.
|
||||
Will be used for the underlying value estimator. Defaults to ``"reward"``.
|
||||
done (NestedKey): The key in the input TensorDict that indicates
|
||||
whether a trajectory is done. Will be used for the underlying value estimator.
|
||||
Defaults to ``"done"``.
|
||||
terminated (NestedKey): The key in the input TensorDict that indicates
|
||||
whether a trajectory is terminated. Will be used for the underlying value estimator.
|
||||
Defaults to ``"terminated"``.
|
||||
"""
|
||||
|
||||
advantage: NestedKey = "advantage"
|
||||
value_target: NestedKey = "value_target"
|
||||
value: NestedKey = "state_value"
|
||||
sample_log_prob: NestedKey = "sample_log_prob"
|
||||
action: NestedKey = "action"
|
||||
reward: NestedKey = "reward"
|
||||
done: NestedKey = "done"
|
||||
terminated: NestedKey = "terminated"
|
||||
|
||||
default_keys = _AcceptedKeys()
|
||||
default_value_estimator = ValueEstimators.GAE
|
||||
|
||||
|
||||
actor_network: TensorDictModule
|
||||
critic_network: TensorDictModule
|
||||
actor_network_params: TensorDictParams
|
||||
critic_network_params: TensorDictParams
|
||||
target_actor_network_params: TensorDictParams
|
||||
target_critic_network_params: TensorDictParams
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
actor_network: ProbabilisticTensorDictSequential | None = None,
|
||||
critic_network: TensorDictModule | None = None,
|
||||
trust_region_layer: any | None = None,
|
||||
entropy_bonus: bool = True,
|
||||
samples_mc_entropy: int = 1,
|
||||
entropy_coef: float = 0.01,
|
||||
critic_coef: float = 1.0,
|
||||
trust_region_coef: float = 10.0,
|
||||
loss_critic_type: str = "smooth_l1",
|
||||
normalize_advantage: bool = False,
|
||||
gamma: float = None,
|
||||
separate_losses: bool = False,
|
||||
reduction: str = None,
|
||||
clip_value: bool | float | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
self.trust_region_layer = trust_region_layer
|
||||
self.trust_region_coef = trust_region_coef
|
||||
|
||||
super(TRPLLoss, self).__init__(
|
||||
actor_network,
|
||||
critic_network,
|
||||
entropy_bonus=entropy_bonus,
|
||||
samples_mc_entropy=samples_mc_entropy,
|
||||
entropy_coef=entropy_coef,
|
||||
critic_coef=critic_coef,
|
||||
loss_critic_type=loss_critic_type,
|
||||
normalize_advantage=normalize_advantage,
|
||||
gamma=gamma,
|
||||
separate_losses=separate_losses,
|
||||
reduction=reduction,
|
||||
clip_value=clip_value,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def out_keys(self):
|
||||
if self._out_keys is None:
|
||||
keys = ["loss_objective"]
|
||||
if self.entropy_bonus:
|
||||
keys.extend(["entropy", "loss_entropy"])
|
||||
if self.loss_critic:
|
||||
keys.append("loss_critic")
|
||||
keys.append("ESS")
|
||||
self._out_keys = keys
|
||||
return self._out_keys
|
||||
|
||||
@out_keys.setter
|
||||
def out_keys(self, values):
|
||||
self._out_keys = values
|
||||
|
||||
@dispatch
|
||||
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
|
||||
tensordict = tensordict.clone(False)
|
||||
advantage = tensordict.get(self.tensor_keys.advantage, None)
|
||||
if advantage is None:
|
||||
self.value_estimator(
|
||||
tensordict,
|
||||
params=self._cached_critic_network_params_detached,
|
||||
target_params=self.target_critic_network_params,
|
||||
)
|
||||
advantage = tensordict.get(self.tensor_keys.advantage)
|
||||
if self.normalize_advantage and advantage.numel() > 1:
|
||||
loc = advantage.mean()
|
||||
scale = advantage.std().clamp_min(1e-6)
|
||||
advantage = (advantage - loc) / scale
|
||||
|
||||
log_weight, dist, kl_approx = self._log_weight(tensordict)
|
||||
trust_region_loss_unscaled = self._trust_region_loss(tensordict)
|
||||
# ESS for logging
|
||||
with torch.no_grad():
|
||||
# In theory, ESS should be computed on particles sampled from the same source. Here we sample according
|
||||
# to different, unrelated trajectories, which is not standard. Still it can give a idea of the dispersion
|
||||
# of the weights.
|
||||
lw = log_weight.squeeze()
|
||||
ess = (2 * lw.logsumexp(0) - (2 * lw).logsumexp(0)).exp()
|
||||
batch = log_weight.shape[0]
|
||||
|
||||
surrogate_gain = log_weight.exp() * advantage
|
||||
trust_region_loss = trust_region_loss_unscaled * self.trust_region_coef
|
||||
|
||||
loss = -surrogate_gain + trust_region_loss
|
||||
td_out = TensorDict({"loss_objective": loss}, batch_size=[])
|
||||
td_out.set("tr_loss", trust_region_loss)
|
||||
|
||||
if self.entropy_bonus:
|
||||
entropy = self.get_entropy_bonus(dist)
|
||||
td_out.set("entropy", entropy.detach().mean()) # for logging
|
||||
td_out.set("kl_approx", kl_approx.detach().mean()) # for logging
|
||||
td_out.set("loss_entropy", -self.entropy_coef * entropy)
|
||||
if self.critic_coef:
|
||||
loss_critic, value_clip_fraction = self.loss_critic(tensordict)
|
||||
td_out.set("loss_critic", loss_critic)
|
||||
if value_clip_fraction is not None:
|
||||
td_out.set("value_clip_fraction", value_clip_fraction)
|
||||
|
||||
td_out.set("ESS", _reduce(ess, self.reduction) / batch)
|
||||
td_out = td_out.named_apply(
|
||||
lambda name, value: _reduce(value, reduction=self.reduction).squeeze(-1)
|
||||
if name.startswith("loss_")
|
||||
else value,
|
||||
batch_size=[],
|
||||
)
|
||||
return td_out
|
||||
|
||||
def _trust_region_loss(self, tensordict):
|
||||
old_distribution =
|
||||
raw_distribution =
|
||||
return self.policy_projection.get_trust_region_loss(raw_distribution, old_distribution)
|
Loading…
Reference in New Issue
Block a user