Started implementation of TRPL loss objective module

This commit is contained in:
Dominik Moritz Roth 2024-06-02 11:48:51 +02:00
parent b34224f189
commit 3931f5e31b
2 changed files with 202 additions and 0 deletions

View File

@ -0,0 +1 @@
from fancy_rl.objectives.trpl import TRPLLoss

201
fancy_rl/objectives/trpl.py Normal file
View File

@ -0,0 +1,201 @@
from __future__ import annotations
import contextlib
import math
from copy import deepcopy
from dataclasses import dataclass
from typing import Tuple
import torch
from tensordict import TensorDict, TensorDictBase, TensorDictParams
from tensordict.nn import (
dispatch,
ProbabilisticTensorDictModule,
ProbabilisticTensorDictSequential,
TensorDictModule,
)
from tensordict.utils import NestedKey
from torch import distributions as d
from torchrl.objectives.common import LossModule
from torchrl.objectives.utils import (
_cache_values,
_clip_value_loss,
_GAMMA_LMBDA_DEPREC_ERROR,
_reduce,
default_value_kwargs,
distance_loss,
ValueEstimators,
)
from torchrl.objectives.value import (
GAE,
TD0Estimator,
TD1Estimator,
TDLambdaEstimator,
VTrace,
)
from torchrl.objectives.ppo import PPOLoss
class TRPLLoss(PPOLoss):
@dataclass
class _AcceptedKeys:
"""Maintains default values for all configurable tensordict keys.
This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their
default values
Attributes:
advantage (NestedKey): The input tensordict key where the advantage is expected.
Will be used for the underlying value estimator. Defaults to ``"advantage"``.
value_target (NestedKey): The input tensordict key where the target state value is expected.
Will be used for the underlying value estimator Defaults to ``"value_target"``.
value (NestedKey): The input tensordict key where the state value is expected.
Will be used for the underlying value estimator. Defaults to ``"state_value"``.
sample_log_prob (NestedKey): The input tensordict key where the
sample log probability is expected. Defaults to ``"sample_log_prob"``.
action (NestedKey): The input tensordict key where the action is expected.
Defaults to ``"action"``.
reward (NestedKey): The input tensordict key where the reward is expected.
Will be used for the underlying value estimator. Defaults to ``"reward"``.
done (NestedKey): The key in the input TensorDict that indicates
whether a trajectory is done. Will be used for the underlying value estimator.
Defaults to ``"done"``.
terminated (NestedKey): The key in the input TensorDict that indicates
whether a trajectory is terminated. Will be used for the underlying value estimator.
Defaults to ``"terminated"``.
"""
advantage: NestedKey = "advantage"
value_target: NestedKey = "value_target"
value: NestedKey = "state_value"
sample_log_prob: NestedKey = "sample_log_prob"
action: NestedKey = "action"
reward: NestedKey = "reward"
done: NestedKey = "done"
terminated: NestedKey = "terminated"
default_keys = _AcceptedKeys()
default_value_estimator = ValueEstimators.GAE
actor_network: TensorDictModule
critic_network: TensorDictModule
actor_network_params: TensorDictParams
critic_network_params: TensorDictParams
target_actor_network_params: TensorDictParams
target_critic_network_params: TensorDictParams
def __init__(
self,
actor_network: ProbabilisticTensorDictSequential | None = None,
critic_network: TensorDictModule | None = None,
trust_region_layer: any | None = None,
entropy_bonus: bool = True,
samples_mc_entropy: int = 1,
entropy_coef: float = 0.01,
critic_coef: float = 1.0,
trust_region_coef: float = 10.0,
loss_critic_type: str = "smooth_l1",
normalize_advantage: bool = False,
gamma: float = None,
separate_losses: bool = False,
reduction: str = None,
clip_value: bool | float | None = None,
**kwargs,
):
self.trust_region_layer = trust_region_layer
self.trust_region_coef = trust_region_coef
super(TRPLLoss, self).__init__(
actor_network,
critic_network,
entropy_bonus=entropy_bonus,
samples_mc_entropy=samples_mc_entropy,
entropy_coef=entropy_coef,
critic_coef=critic_coef,
loss_critic_type=loss_critic_type,
normalize_advantage=normalize_advantage,
gamma=gamma,
separate_losses=separate_losses,
reduction=reduction,
clip_value=clip_value,
**kwargs,
)
@property
def out_keys(self):
if self._out_keys is None:
keys = ["loss_objective"]
if self.entropy_bonus:
keys.extend(["entropy", "loss_entropy"])
if self.loss_critic:
keys.append("loss_critic")
keys.append("ESS")
self._out_keys = keys
return self._out_keys
@out_keys.setter
def out_keys(self, values):
self._out_keys = values
@dispatch
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
tensordict = tensordict.clone(False)
advantage = tensordict.get(self.tensor_keys.advantage, None)
if advantage is None:
self.value_estimator(
tensordict,
params=self._cached_critic_network_params_detached,
target_params=self.target_critic_network_params,
)
advantage = tensordict.get(self.tensor_keys.advantage)
if self.normalize_advantage and advantage.numel() > 1:
loc = advantage.mean()
scale = advantage.std().clamp_min(1e-6)
advantage = (advantage - loc) / scale
log_weight, dist, kl_approx = self._log_weight(tensordict)
trust_region_loss_unscaled = self._trust_region_loss(tensordict)
# ESS for logging
with torch.no_grad():
# In theory, ESS should be computed on particles sampled from the same source. Here we sample according
# to different, unrelated trajectories, which is not standard. Still it can give a idea of the dispersion
# of the weights.
lw = log_weight.squeeze()
ess = (2 * lw.logsumexp(0) - (2 * lw).logsumexp(0)).exp()
batch = log_weight.shape[0]
surrogate_gain = log_weight.exp() * advantage
trust_region_loss = trust_region_loss_unscaled * self.trust_region_coef
loss = -surrogate_gain + trust_region_loss
td_out = TensorDict({"loss_objective": loss}, batch_size=[])
td_out.set("tr_loss", trust_region_loss)
if self.entropy_bonus:
entropy = self.get_entropy_bonus(dist)
td_out.set("entropy", entropy.detach().mean()) # for logging
td_out.set("kl_approx", kl_approx.detach().mean()) # for logging
td_out.set("loss_entropy", -self.entropy_coef * entropy)
if self.critic_coef:
loss_critic, value_clip_fraction = self.loss_critic(tensordict)
td_out.set("loss_critic", loss_critic)
if value_clip_fraction is not None:
td_out.set("value_clip_fraction", value_clip_fraction)
td_out.set("ESS", _reduce(ess, self.reduction) / batch)
td_out = td_out.named_apply(
lambda name, value: _reduce(value, reduction=self.reduction).squeeze(-1)
if name.startswith("loss_")
else value,
batch_size=[],
)
return td_out
def _trust_region_loss(self, tensordict):
old_distribution =
raw_distribution =
return self.policy_projection.get_trust_region_loss(raw_distribution, old_distribution)