refactor algo impls
This commit is contained in:
parent
dd98af9f77
commit
4f58ce0ff2
@ -1 +1,3 @@
|
|||||||
from fancy_rl.algos.ppo import PPO
|
from fancy_rl.algos.ppo import PPO
|
||||||
|
from fancy_rl.algos.trpl import TRPL
|
||||||
|
from fancy_rl.algos.vlearn import VLEARN
|
@ -15,23 +15,17 @@ class OnPolicy(Algo):
|
|||||||
env_spec,
|
env_spec,
|
||||||
optimizers,
|
optimizers,
|
||||||
loggers=None,
|
loggers=None,
|
||||||
actor_hidden_sizes=[64, 64],
|
|
||||||
critic_hidden_sizes=[64, 64],
|
|
||||||
actor_activation_fn="Tanh",
|
|
||||||
critic_activation_fn="Tanh",
|
|
||||||
learning_rate=3e-4,
|
learning_rate=3e-4,
|
||||||
n_steps=2048,
|
n_steps=2048,
|
||||||
batch_size=64,
|
batch_size=64,
|
||||||
n_epochs=10,
|
n_epochs=10,
|
||||||
gamma=0.99,
|
gamma=0.99,
|
||||||
gae_lambda=0.95,
|
|
||||||
total_timesteps=1e6,
|
total_timesteps=1e6,
|
||||||
eval_interval=2048,
|
eval_interval=2048,
|
||||||
eval_deterministic=True,
|
eval_deterministic=True,
|
||||||
entropy_coef=0.01,
|
entropy_coef=0.01,
|
||||||
critic_coef=0.5,
|
critic_coef=0.5,
|
||||||
normalize_advantage=True,
|
normalize_advantage=True,
|
||||||
clip_range=0.2,
|
|
||||||
env_spec_eval=None,
|
env_spec_eval=None,
|
||||||
eval_episodes=10,
|
eval_episodes=10,
|
||||||
device=None,
|
device=None,
|
||||||
@ -77,15 +71,25 @@ class OnPolicy(Algo):
|
|||||||
batch_size=self.batch_size,
|
batch_size=self.batch_size,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def pre_process_batch(self, batch):
|
||||||
|
return batch
|
||||||
|
|
||||||
|
def post_process_batch(self, batch):
|
||||||
|
pass
|
||||||
|
|
||||||
def train_step(self, batch):
|
def train_step(self, batch):
|
||||||
|
batch = self.pre_process_batch(batch)
|
||||||
|
|
||||||
for optimizer in self.optimizers.values():
|
for optimizer in self.optimizers.values():
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
losses = self.loss_module(batch)
|
losses = self.loss_module(batch)
|
||||||
loss = losses['loss_objective'] + losses["loss_entropy"] + losses["loss_critic"]
|
loss = sum(losses.values()) # Sum all losses
|
||||||
loss.backward()
|
loss.backward()
|
||||||
for optimizer in self.optimizers.values():
|
for optimizer in self.optimizers.values():
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
|
self.post_process_batch(batch)
|
||||||
|
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
def train(self):
|
def train(self):
|
||||||
|
@ -4,6 +4,7 @@ from torchrl.objectives import ClipPPOLoss
|
|||||||
from torchrl.objectives.value.advantages import GAE
|
from torchrl.objectives.value.advantages import GAE
|
||||||
from fancy_rl.algos.on_policy import OnPolicy
|
from fancy_rl.algos.on_policy import OnPolicy
|
||||||
from fancy_rl.policy import Actor, Critic
|
from fancy_rl.policy import Actor, Critic
|
||||||
|
from fancy_rl.projections import get_projection # Updated import
|
||||||
|
|
||||||
class PPO(OnPolicy):
|
class PPO(OnPolicy):
|
||||||
def __init__(
|
def __init__(
|
||||||
|
@ -1,9 +1,16 @@
|
|||||||
import torch
|
import torch
|
||||||
from torchrl.modules import ProbabilisticActor
|
from torch import nn
|
||||||
from torchrl.objectives.value.advantages import GAE
|
from typing import Dict, Any, Optional
|
||||||
|
from torchrl.modules import ProbabilisticActor, ValueOperator
|
||||||
|
from torchrl.objectives import ClipPPOLoss
|
||||||
|
from torchrl.collectors import SyncDataCollector
|
||||||
|
from torchrl.data import TensorDictReplayBuffer, LazyTensorStorage, SamplerWithoutReplacement
|
||||||
|
from torchrl.objectives.value import GAE
|
||||||
from fancy_rl.algos.on_policy import OnPolicy
|
from fancy_rl.algos.on_policy import OnPolicy
|
||||||
from fancy_rl.policy import Actor, Critic
|
from fancy_rl.policy import Actor, Critic
|
||||||
|
from fancy_rl.projections import get_projection, BaseProjection
|
||||||
from fancy_rl.objectives import TRPLLoss
|
from fancy_rl.objectives import TRPLLoss
|
||||||
|
from copy import deepcopy
|
||||||
|
|
||||||
class TRPL(OnPolicy):
|
class TRPL(OnPolicy):
|
||||||
def __init__(
|
def __init__(
|
||||||
@ -14,19 +21,21 @@ class TRPL(OnPolicy):
|
|||||||
critic_hidden_sizes=[64, 64],
|
critic_hidden_sizes=[64, 64],
|
||||||
actor_activation_fn="Tanh",
|
actor_activation_fn="Tanh",
|
||||||
critic_activation_fn="Tanh",
|
critic_activation_fn="Tanh",
|
||||||
proj_layer_type=None,
|
|
||||||
learning_rate=3e-4,
|
learning_rate=3e-4,
|
||||||
n_steps=2048,
|
n_steps=2048,
|
||||||
batch_size=64,
|
batch_size=64,
|
||||||
n_epochs=10,
|
n_epochs=10,
|
||||||
gamma=0.99,
|
gamma=0.99,
|
||||||
gae_lambda=0.95,
|
gae_lambda=0.95,
|
||||||
|
projection_class="identity_projection",
|
||||||
|
trust_region_coef=10.0,
|
||||||
|
trust_region_bound_mean=0.1,
|
||||||
|
trust_region_bound_cov=0.001,
|
||||||
total_timesteps=1e6,
|
total_timesteps=1e6,
|
||||||
eval_interval=2048,
|
eval_interval=2048,
|
||||||
eval_deterministic=True,
|
eval_deterministic=True,
|
||||||
entropy_coef=0.01,
|
entropy_coef=0.01,
|
||||||
critic_coef=0.5,
|
critic_coef=0.5,
|
||||||
trust_region_coef=10.0,
|
|
||||||
normalize_advantage=False,
|
normalize_advantage=False,
|
||||||
device=None,
|
device=None,
|
||||||
env_spec_eval=None,
|
env_spec_eval=None,
|
||||||
@ -35,9 +44,6 @@ class TRPL(OnPolicy):
|
|||||||
device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
self.device = device
|
self.device = device
|
||||||
|
|
||||||
self.trust_region_layer = None # TODO: from proj_layer_type
|
|
||||||
self.trust_region_coef = trust_region_coef
|
|
||||||
|
|
||||||
# Initialize environment to get observation and action space sizes
|
# Initialize environment to get observation and action space sizes
|
||||||
self.env_spec = env_spec
|
self.env_spec = env_spec
|
||||||
env = self.make_env()
|
env = self.make_env()
|
||||||
@ -46,14 +52,40 @@ class TRPL(OnPolicy):
|
|||||||
|
|
||||||
self.critic = Critic(obs_space, critic_hidden_sizes, critic_activation_fn, device)
|
self.critic = Critic(obs_space, critic_hidden_sizes, critic_activation_fn, device)
|
||||||
actor_net = Actor(obs_space, act_space, actor_hidden_sizes, actor_activation_fn, device)
|
actor_net = Actor(obs_space, act_space, actor_hidden_sizes, actor_activation_fn, device)
|
||||||
raw_actor = ProbabilisticActor(
|
|
||||||
module=actor_net,
|
# Handle projection_class
|
||||||
|
if isinstance(projection_class, str):
|
||||||
|
projection_class = get_projection(projection_class)
|
||||||
|
elif not issubclass(projection_class, BaseProjection):
|
||||||
|
raise ValueError("projection_class must be a string or a subclass of BaseProjection")
|
||||||
|
|
||||||
|
self.projection = projection_class(
|
||||||
in_keys=["loc", "scale"],
|
in_keys=["loc", "scale"],
|
||||||
out_keys=["action"],
|
out_keys=["loc", "scale"],
|
||||||
|
trust_region_bound_mean=trust_region_bound_mean,
|
||||||
|
trust_region_bound_cov=trust_region_bound_cov
|
||||||
|
)
|
||||||
|
|
||||||
|
self.actor = ProbabilisticActor(
|
||||||
|
module=actor_net,
|
||||||
|
in_keys=["observation"],
|
||||||
|
out_keys=["loc", "scale"],
|
||||||
distribution_class=torch.distributions.Normal,
|
distribution_class=torch.distributions.Normal,
|
||||||
return_log_prob=True
|
return_log_prob=True
|
||||||
)
|
)
|
||||||
self.actor = raw_actor # TODO: Proj here
|
self.old_actor = deepcopy(self.actor)
|
||||||
|
|
||||||
|
self.trust_region_coef = trust_region_coef
|
||||||
|
self.loss_module = TRPLLoss(
|
||||||
|
actor_network=self.actor,
|
||||||
|
old_actor_network=self.old_actor,
|
||||||
|
critic_network=self.critic,
|
||||||
|
projection=self.projection,
|
||||||
|
entropy_coef=entropy_coef,
|
||||||
|
critic_coef=critic_coef,
|
||||||
|
trust_region_coef=trust_region_coef,
|
||||||
|
normalize_advantage=normalize_advantage,
|
||||||
|
)
|
||||||
|
|
||||||
optimizers = {
|
optimizers = {
|
||||||
"actor": torch.optim.Adam(self.actor.parameters(), lr=learning_rate),
|
"actor": torch.optim.Adam(self.actor.parameters(), lr=learning_rate),
|
||||||
@ -79,7 +111,6 @@ class TRPL(OnPolicy):
|
|||||||
env_spec_eval=env_spec_eval,
|
env_spec_eval=env_spec_eval,
|
||||||
eval_episodes=eval_episodes,
|
eval_episodes=eval_episodes,
|
||||||
)
|
)
|
||||||
|
|
||||||
self.adv_module = GAE(
|
self.adv_module = GAE(
|
||||||
gamma=self.gamma,
|
gamma=self.gamma,
|
||||||
lmbda=gae_lambda,
|
lmbda=gae_lambda,
|
||||||
@ -87,13 +118,24 @@ class TRPL(OnPolicy):
|
|||||||
average_gae=False,
|
average_gae=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
self.loss_module = TRPLLoss(
|
def update_old_policy(self):
|
||||||
actor_network=self.actor,
|
self.old_actor.load_state_dict(self.actor.state_dict())
|
||||||
critic_network=self.critic,
|
|
||||||
trust_region_layer=self.trust_region_layer,
|
def project_policy(self, obs):
|
||||||
loss_critic_type='l2',
|
with torch.no_grad():
|
||||||
entropy_coef=self.entropy_coef,
|
old_dist = self.old_actor(obs)
|
||||||
critic_coef=self.critic_coef,
|
new_dist = self.actor(obs)
|
||||||
trust_region_coef=self.trust_region_coef,
|
projected_params = self.projection.project(new_dist, old_dist)
|
||||||
normalize_advantage=self.normalize_advantage,
|
return projected_params
|
||||||
)
|
|
||||||
|
def pre_update(self, tensordict):
|
||||||
|
obs = tensordict["observation"]
|
||||||
|
projected_dist = self.project_policy(obs)
|
||||||
|
|
||||||
|
# Update tensordict with projected distribution parameters
|
||||||
|
tensordict["projected_loc"] = projected_dist[0]
|
||||||
|
tensordict["projected_scale"] = projected_dist[1]
|
||||||
|
return tensordict
|
||||||
|
|
||||||
|
def post_update(self):
|
||||||
|
self.update_old_policy()
|
||||||
|
Loading…
Reference in New Issue
Block a user