refactor algo impls
This commit is contained in:
parent
dd98af9f77
commit
4f58ce0ff2
@ -1 +1,3 @@
|
||||
from fancy_rl.algos.ppo import PPO
|
||||
from fancy_rl.algos.trpl import TRPL
|
||||
from fancy_rl.algos.vlearn import VLEARN
|
@ -15,23 +15,17 @@ class OnPolicy(Algo):
|
||||
env_spec,
|
||||
optimizers,
|
||||
loggers=None,
|
||||
actor_hidden_sizes=[64, 64],
|
||||
critic_hidden_sizes=[64, 64],
|
||||
actor_activation_fn="Tanh",
|
||||
critic_activation_fn="Tanh",
|
||||
learning_rate=3e-4,
|
||||
n_steps=2048,
|
||||
batch_size=64,
|
||||
n_epochs=10,
|
||||
gamma=0.99,
|
||||
gae_lambda=0.95,
|
||||
total_timesteps=1e6,
|
||||
eval_interval=2048,
|
||||
eval_deterministic=True,
|
||||
entropy_coef=0.01,
|
||||
critic_coef=0.5,
|
||||
normalize_advantage=True,
|
||||
clip_range=0.2,
|
||||
env_spec_eval=None,
|
||||
eval_episodes=10,
|
||||
device=None,
|
||||
@ -77,15 +71,25 @@ class OnPolicy(Algo):
|
||||
batch_size=self.batch_size,
|
||||
)
|
||||
|
||||
def pre_process_batch(self, batch):
|
||||
return batch
|
||||
|
||||
def post_process_batch(self, batch):
|
||||
pass
|
||||
|
||||
def train_step(self, batch):
|
||||
batch = self.pre_process_batch(batch)
|
||||
|
||||
for optimizer in self.optimizers.values():
|
||||
optimizer.zero_grad()
|
||||
losses = self.loss_module(batch)
|
||||
loss = losses['loss_objective'] + losses["loss_entropy"] + losses["loss_critic"]
|
||||
loss = sum(losses.values()) # Sum all losses
|
||||
loss.backward()
|
||||
for optimizer in self.optimizers.values():
|
||||
optimizer.step()
|
||||
|
||||
self.post_process_batch(batch)
|
||||
|
||||
return loss
|
||||
|
||||
def train(self):
|
||||
|
@ -4,6 +4,7 @@ from torchrl.objectives import ClipPPOLoss
|
||||
from torchrl.objectives.value.advantages import GAE
|
||||
from fancy_rl.algos.on_policy import OnPolicy
|
||||
from fancy_rl.policy import Actor, Critic
|
||||
from fancy_rl.projections import get_projection # Updated import
|
||||
|
||||
class PPO(OnPolicy):
|
||||
def __init__(
|
||||
|
@ -1,9 +1,16 @@
|
||||
import torch
|
||||
from torchrl.modules import ProbabilisticActor
|
||||
from torchrl.objectives.value.advantages import GAE
|
||||
from torch import nn
|
||||
from typing import Dict, Any, Optional
|
||||
from torchrl.modules import ProbabilisticActor, ValueOperator
|
||||
from torchrl.objectives import ClipPPOLoss
|
||||
from torchrl.collectors import SyncDataCollector
|
||||
from torchrl.data import TensorDictReplayBuffer, LazyTensorStorage, SamplerWithoutReplacement
|
||||
from torchrl.objectives.value import GAE
|
||||
from fancy_rl.algos.on_policy import OnPolicy
|
||||
from fancy_rl.policy import Actor, Critic
|
||||
from fancy_rl.projections import get_projection, BaseProjection
|
||||
from fancy_rl.objectives import TRPLLoss
|
||||
from copy import deepcopy
|
||||
|
||||
class TRPL(OnPolicy):
|
||||
def __init__(
|
||||
@ -14,19 +21,21 @@ class TRPL(OnPolicy):
|
||||
critic_hidden_sizes=[64, 64],
|
||||
actor_activation_fn="Tanh",
|
||||
critic_activation_fn="Tanh",
|
||||
proj_layer_type=None,
|
||||
learning_rate=3e-4,
|
||||
n_steps=2048,
|
||||
batch_size=64,
|
||||
n_epochs=10,
|
||||
gamma=0.99,
|
||||
gae_lambda=0.95,
|
||||
projection_class="identity_projection",
|
||||
trust_region_coef=10.0,
|
||||
trust_region_bound_mean=0.1,
|
||||
trust_region_bound_cov=0.001,
|
||||
total_timesteps=1e6,
|
||||
eval_interval=2048,
|
||||
eval_deterministic=True,
|
||||
entropy_coef=0.01,
|
||||
critic_coef=0.5,
|
||||
trust_region_coef=10.0,
|
||||
normalize_advantage=False,
|
||||
device=None,
|
||||
env_spec_eval=None,
|
||||
@ -35,9 +44,6 @@ class TRPL(OnPolicy):
|
||||
device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
self.device = device
|
||||
|
||||
self.trust_region_layer = None # TODO: from proj_layer_type
|
||||
self.trust_region_coef = trust_region_coef
|
||||
|
||||
# Initialize environment to get observation and action space sizes
|
||||
self.env_spec = env_spec
|
||||
env = self.make_env()
|
||||
@ -46,14 +52,40 @@ class TRPL(OnPolicy):
|
||||
|
||||
self.critic = Critic(obs_space, critic_hidden_sizes, critic_activation_fn, device)
|
||||
actor_net = Actor(obs_space, act_space, actor_hidden_sizes, actor_activation_fn, device)
|
||||
raw_actor = ProbabilisticActor(
|
||||
module=actor_net,
|
||||
|
||||
# Handle projection_class
|
||||
if isinstance(projection_class, str):
|
||||
projection_class = get_projection(projection_class)
|
||||
elif not issubclass(projection_class, BaseProjection):
|
||||
raise ValueError("projection_class must be a string or a subclass of BaseProjection")
|
||||
|
||||
self.projection = projection_class(
|
||||
in_keys=["loc", "scale"],
|
||||
out_keys=["action"],
|
||||
out_keys=["loc", "scale"],
|
||||
trust_region_bound_mean=trust_region_bound_mean,
|
||||
trust_region_bound_cov=trust_region_bound_cov
|
||||
)
|
||||
|
||||
self.actor = ProbabilisticActor(
|
||||
module=actor_net,
|
||||
in_keys=["observation"],
|
||||
out_keys=["loc", "scale"],
|
||||
distribution_class=torch.distributions.Normal,
|
||||
return_log_prob=True
|
||||
)
|
||||
self.actor = raw_actor # TODO: Proj here
|
||||
self.old_actor = deepcopy(self.actor)
|
||||
|
||||
self.trust_region_coef = trust_region_coef
|
||||
self.loss_module = TRPLLoss(
|
||||
actor_network=self.actor,
|
||||
old_actor_network=self.old_actor,
|
||||
critic_network=self.critic,
|
||||
projection=self.projection,
|
||||
entropy_coef=entropy_coef,
|
||||
critic_coef=critic_coef,
|
||||
trust_region_coef=trust_region_coef,
|
||||
normalize_advantage=normalize_advantage,
|
||||
)
|
||||
|
||||
optimizers = {
|
||||
"actor": torch.optim.Adam(self.actor.parameters(), lr=learning_rate),
|
||||
@ -79,7 +111,6 @@ class TRPL(OnPolicy):
|
||||
env_spec_eval=env_spec_eval,
|
||||
eval_episodes=eval_episodes,
|
||||
)
|
||||
|
||||
self.adv_module = GAE(
|
||||
gamma=self.gamma,
|
||||
lmbda=gae_lambda,
|
||||
@ -87,13 +118,24 @@ class TRPL(OnPolicy):
|
||||
average_gae=False,
|
||||
)
|
||||
|
||||
self.loss_module = TRPLLoss(
|
||||
actor_network=self.actor,
|
||||
critic_network=self.critic,
|
||||
trust_region_layer=self.trust_region_layer,
|
||||
loss_critic_type='l2',
|
||||
entropy_coef=self.entropy_coef,
|
||||
critic_coef=self.critic_coef,
|
||||
trust_region_coef=self.trust_region_coef,
|
||||
normalize_advantage=self.normalize_advantage,
|
||||
)
|
||||
def update_old_policy(self):
|
||||
self.old_actor.load_state_dict(self.actor.state_dict())
|
||||
|
||||
def project_policy(self, obs):
|
||||
with torch.no_grad():
|
||||
old_dist = self.old_actor(obs)
|
||||
new_dist = self.actor(obs)
|
||||
projected_params = self.projection.project(new_dist, old_dist)
|
||||
return projected_params
|
||||
|
||||
def pre_update(self, tensordict):
|
||||
obs = tensordict["observation"]
|
||||
projected_dist = self.project_policy(obs)
|
||||
|
||||
# Update tensordict with projected distribution parameters
|
||||
tensordict["projected_loc"] = projected_dist[0]
|
||||
tensordict["projected_scale"] = projected_dist[1]
|
||||
return tensordict
|
||||
|
||||
def post_update(self):
|
||||
self.update_old_policy()
|
||||
|
Loading…
Reference in New Issue
Block a user