New projection impls
This commit is contained in:
parent
d29417187f
commit
5fc4b30ea8
@ -1,6 +1,20 @@
|
||||
try:
|
||||
import cpp_projection
|
||||
except ModuleNotFoundError:
|
||||
from .base_projection_layer import ITPALExceptionLayer as KLProjectionLayer
|
||||
else:
|
||||
from .kl_projection_layer import KLProjectionLayer
|
||||
from .base_projection import BaseProjection
|
||||
from .identity_projection import IdentityProjection
|
||||
from .kl_projection import KLProjection
|
||||
from .wasserstein_projection import WassersteinProjection
|
||||
from .frobenius_projection import FrobeniusProjection
|
||||
|
||||
def get_projection(projection_name: str):
|
||||
projections = {
|
||||
"identity_projection": IdentityProjection,
|
||||
"kl_projection": KLProjection,
|
||||
"wasserstein_projection": WassersteinProjection,
|
||||
"frobenius_projection": FrobeniusProjection,
|
||||
}
|
||||
|
||||
projection = projections.get(projection_name.lower())
|
||||
if projection is None:
|
||||
raise ValueError(f"Unknown projection: {projection_name}")
|
||||
return projection
|
||||
|
||||
__all__ = ["BaseProjection", "IdentityProjection", "KLProjection", "WassersteinProjection", "FrobeniusProjection", "get_projection"]
|
16
fancy_rl/projections/base_projection.py
Normal file
16
fancy_rl/projections/base_projection.py
Normal file
@ -0,0 +1,16 @@
|
||||
from abc import ABC, abstractmethod
|
||||
import torch
|
||||
from typing import Dict
|
||||
|
||||
class BaseProjection(ABC, torch.nn.Module):
|
||||
def __init__(self, in_keys: list[str], out_keys: list[str]):
|
||||
super().__init__()
|
||||
self.in_keys = in_keys
|
||||
self.out_keys = out_keys
|
||||
|
||||
@abstractmethod
|
||||
def project(self, policy_params: Dict[str, torch.Tensor], old_policy_params: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
pass
|
||||
|
||||
def forward(self, policy_params: Dict[str, torch.Tensor], old_policy_params: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
return self.project(policy_params, old_policy_params)
|
67
fancy_rl/projections/frob_projection.py
Normal file
67
fancy_rl/projections/frob_projection.py
Normal file
@ -0,0 +1,67 @@
|
||||
import torch
|
||||
from .base_projection import BaseProjection
|
||||
from typing import Dict
|
||||
|
||||
class FrobeniusProjection(BaseProjection):
|
||||
def __init__(self, in_keys: list[str], out_keys: list[str], trust_region_coeff: float = 1.0, mean_bound: float = 0.01, cov_bound: float = 0.01, scale_prec: bool = False):
|
||||
super().__init__(in_keys=in_keys, out_keys=out_keys, trust_region_coeff=trust_region_coeff, mean_bound=mean_bound, cov_bound=cov_bound)
|
||||
self.scale_prec = scale_prec
|
||||
|
||||
def project(self, policy_params: Dict[str, torch.Tensor], old_policy_params: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
mean, chol = policy_params["loc"], policy_params["scale_tril"]
|
||||
old_mean, old_chol = old_policy_params["loc"], old_policy_params["scale_tril"]
|
||||
|
||||
cov = torch.matmul(chol, chol.transpose(-1, -2))
|
||||
old_cov = torch.matmul(old_chol, old_chol.transpose(-1, -2))
|
||||
|
||||
mean_part, cov_part = self._gaussian_frobenius((mean, cov), (old_mean, old_cov))
|
||||
|
||||
proj_mean = self._mean_projection(mean, old_mean, mean_part)
|
||||
proj_cov = self._cov_projection(cov, old_cov, cov_part)
|
||||
|
||||
proj_chol = torch.linalg.cholesky(proj_cov)
|
||||
return {"loc": proj_mean, "scale_tril": proj_chol}
|
||||
|
||||
def get_trust_region_loss(self, policy_params: Dict[str, torch.Tensor], proj_policy_params: Dict[str, torch.Tensor]) -> torch.Tensor:
|
||||
mean, chol = policy_params["loc"], policy_params["scale_tril"]
|
||||
proj_mean, proj_chol = proj_policy_params["loc"], proj_policy_params["scale_tril"]
|
||||
|
||||
cov = torch.matmul(chol, chol.transpose(-1, -2))
|
||||
proj_cov = torch.matmul(proj_chol, proj_chol.transpose(-1, -2))
|
||||
|
||||
mean_diff = torch.sum(torch.square(mean - proj_mean), dim=-1)
|
||||
cov_diff = torch.sum(torch.square(cov - proj_cov), dim=(-2, -1))
|
||||
|
||||
return (mean_diff + cov_diff).mean() * self.trust_region_coeff
|
||||
|
||||
def _gaussian_frobenius(self, p, q):
|
||||
mean, cov = p
|
||||
old_mean, old_cov = q
|
||||
|
||||
if self.scale_prec:
|
||||
prec_old = torch.inverse(old_cov)
|
||||
mean_part = torch.sum(torch.matmul(mean - old_mean, prec_old) * (mean - old_mean), dim=-1)
|
||||
cov_part = torch.sum(prec_old * cov, dim=(-2, -1)) - torch.logdet(torch.matmul(prec_old, cov)) - mean.shape[-1]
|
||||
else:
|
||||
mean_part = torch.sum(torch.square(mean - old_mean), dim=-1)
|
||||
cov_part = torch.sum(torch.square(cov - old_cov), dim=(-2, -1))
|
||||
|
||||
return mean_part, cov_part
|
||||
|
||||
def _mean_projection(self, mean: torch.Tensor, old_mean: torch.Tensor, mean_part: torch.Tensor) -> torch.Tensor:
|
||||
diff = mean - old_mean
|
||||
norm = torch.sqrt(mean_part)
|
||||
return torch.where(norm > self.mean_bound, old_mean + diff * self.mean_bound / norm.unsqueeze(-1), mean)
|
||||
|
||||
def _cov_projection(self, cov: torch.Tensor, old_cov: torch.Tensor, cov_part: torch.Tensor) -> torch.Tensor:
|
||||
batch_shape = cov.shape[:-2]
|
||||
cov_mask = cov_part > self.cov_bound
|
||||
|
||||
eta = torch.ones(batch_shape, dtype=cov.dtype, device=cov.device)
|
||||
eta[cov_mask] = torch.sqrt(cov_part[cov_mask] / self.cov_bound) - 1.
|
||||
eta = torch.max(-eta, eta)
|
||||
|
||||
new_cov = (cov + torch.einsum('i,ijk->ijk', eta, old_cov)) / (1. + eta + 1e-16)[..., None, None]
|
||||
proj_cov = torch.where(cov_mask[..., None, None], new_cov, cov)
|
||||
|
||||
return proj_cov
|
13
fancy_rl/projections/identity_projection.py
Normal file
13
fancy_rl/projections/identity_projection.py
Normal file
@ -0,0 +1,13 @@
|
||||
import torch
|
||||
from .base_projection import BaseProjection
|
||||
from typing import Dict
|
||||
|
||||
class IdentityProjection(BaseProjection):
|
||||
def __init__(self, in_keys: list[str], out_keys: list[str], trust_region_coeff: float = 1.0, mean_bound: float = 0.01, cov_bound: float = 0.01):
|
||||
super().__init__(in_keys=in_keys, out_keys=out_keys, trust_region_coeff=trust_region_coeff, mean_bound=mean_bound, cov_bound=cov_bound)
|
||||
|
||||
def project(self, policy_params: Dict[str, torch.Tensor], old_policy_params: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
return policy_params
|
||||
|
||||
def get_trust_region_loss(self, policy_params: Dict[str, torch.Tensor], proj_policy_params: Dict[str, torch.Tensor]) -> torch.Tensor:
|
||||
return torch.tensor(0.0, device=next(iter(policy_params.values())).device)
|
199
fancy_rl/projections/kl_projection.py
Normal file
199
fancy_rl/projections/kl_projection.py
Normal file
@ -0,0 +1,199 @@
|
||||
import torch
|
||||
import cpp_projection
|
||||
import numpy as np
|
||||
from .base_projection import BaseProjection
|
||||
from typing import Dict, Tuple, Any
|
||||
|
||||
MAX_EVAL = 1000
|
||||
|
||||
def get_numpy(tensor):
|
||||
return tensor.detach().cpu().numpy()
|
||||
|
||||
class KLProjection(BaseProjection):
|
||||
def __init__(self, in_keys: list[str], out_keys: list[str], trust_region_coeff: float = 1.0, mean_bound: float = 0.01, cov_bound: float = 0.01, is_diag: bool = True, contextual_std: bool = True):
|
||||
super().__init__(in_keys=in_keys, out_keys=out_keys, trust_region_coeff=trust_region_coeff, mean_bound=mean_bound, cov_bound=cov_bound)
|
||||
self.is_diag = is_diag
|
||||
self.contextual_std = contextual_std
|
||||
|
||||
def project(self, policy_params: Dict[str, torch.Tensor], old_policy_params: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
mean, std = policy_params["loc"], policy_params["scale_tril"]
|
||||
old_mean, old_std = old_policy_params["loc"], old_policy_params["scale_tril"]
|
||||
|
||||
mean_part, cov_part = self._gaussian_kl((mean, std), (old_mean, old_std))
|
||||
|
||||
if not self.contextual_std:
|
||||
std = std[:1]
|
||||
old_std = old_std[:1]
|
||||
cov_part = cov_part[:1]
|
||||
|
||||
proj_mean = self._mean_projection(mean, old_mean, mean_part)
|
||||
proj_std = self._cov_projection(std, old_std, cov_part)
|
||||
|
||||
if not self.contextual_std:
|
||||
proj_std = proj_std.expand(mean.shape[0], -1, -1)
|
||||
|
||||
return {"loc": proj_mean, "scale_tril": proj_std}
|
||||
|
||||
def get_trust_region_loss(self, policy_params: Dict[str, torch.Tensor], proj_policy_params: Dict[str, torch.Tensor]) -> torch.Tensor:
|
||||
mean, std = policy_params["loc"], policy_params["scale_tril"]
|
||||
proj_mean, proj_std = proj_policy_params["loc"], proj_policy_params["scale_tril"]
|
||||
kl = sum(self._gaussian_kl((mean, std), (proj_mean, proj_std)))
|
||||
return kl.mean() * self.trust_region_coeff
|
||||
|
||||
def _gaussian_kl(self, p: Tuple[torch.Tensor, torch.Tensor], q: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
mean, std = p
|
||||
mean_other, std_other = q
|
||||
k = mean.shape[-1]
|
||||
|
||||
maha_part = 0.5 * self._maha(mean, mean_other, std_other)
|
||||
|
||||
det_term = self._log_determinant(std)
|
||||
det_term_other = self._log_determinant(std_other)
|
||||
|
||||
trace_part = self._torch_batched_trace_square(torch.linalg.solve_triangular(std_other, std, upper=False))
|
||||
cov_part = 0.5 * (trace_part - k + det_term_other - det_term)
|
||||
|
||||
return maha_part, cov_part
|
||||
|
||||
def _maha(self, x: torch.Tensor, y: torch.Tensor, std: torch.Tensor) -> torch.Tensor:
|
||||
diff = x - y
|
||||
return torch.sum(torch.square(torch.triangular_solve(diff.unsqueeze(-1), std, upper=False)[0].squeeze(-1)), dim=-1)
|
||||
|
||||
def _log_determinant(self, std: torch.Tensor) -> torch.Tensor:
|
||||
return 2 * torch.log(std.diagonal(dim1=-2, dim2=-1)).sum(-1)
|
||||
|
||||
def _torch_batched_trace_square(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return torch.sum(x.pow(2), dim=(-2, -1))
|
||||
|
||||
def _mean_projection(self, mean: torch.Tensor, old_mean: torch.Tensor, mean_part: torch.Tensor) -> torch.Tensor:
|
||||
return old_mean + (mean - old_mean) * torch.sqrt(self.mean_bound / (mean_part + 1e-8)).unsqueeze(-1)
|
||||
|
||||
def _cov_projection(self, std: torch.Tensor, old_std: torch.Tensor, cov_part: torch.Tensor) -> torch.Tensor:
|
||||
cov = torch.matmul(std, std.transpose(-1, -2))
|
||||
old_cov = torch.matmul(old_std, old_std.transpose(-1, -2))
|
||||
|
||||
if self.is_diag:
|
||||
mask = cov_part > self.cov_bound
|
||||
proj_std = torch.zeros_like(std)
|
||||
proj_std[~mask] = std[~mask]
|
||||
try:
|
||||
if mask.any():
|
||||
proj_cov = KLProjectionGradFunctionDiagCovOnly.apply(cov.diagonal(dim1=-2, dim2=-1),
|
||||
old_cov.diagonal(dim1=-2, dim2=-1),
|
||||
self.cov_bound)
|
||||
is_invalid = (proj_cov.mean(dim=-1).isnan() | proj_cov.mean(dim=-1).isinf() | (proj_cov.min(dim=-1).values < 0)) & mask
|
||||
if is_invalid.any():
|
||||
proj_std[is_invalid] = old_std[is_invalid]
|
||||
mask &= ~is_invalid
|
||||
proj_std[mask] = proj_cov[mask].sqrt().diag_embed()
|
||||
except Exception as e:
|
||||
proj_std = old_std
|
||||
else:
|
||||
try:
|
||||
mask = cov_part > self.cov_bound
|
||||
proj_std = torch.zeros_like(std)
|
||||
proj_std[~mask] = std[~mask]
|
||||
if mask.any():
|
||||
proj_cov = KLProjectionGradFunctionCovOnly.apply(cov, std.detach(), old_std, self.cov_bound)
|
||||
is_invalid = proj_cov.mean([-2, -1]).isnan() & mask
|
||||
if is_invalid.any():
|
||||
proj_std[is_invalid] = old_std[is_invalid]
|
||||
mask &= ~is_invalid
|
||||
proj_std[mask], failed_mask = torch.linalg.cholesky_ex(proj_cov[mask])
|
||||
failed_mask = failed_mask.bool()
|
||||
if failed_mask.any():
|
||||
proj_std[failed_mask] = old_std[failed_mask]
|
||||
except Exception as e:
|
||||
import logging
|
||||
logging.error('Projection failed, taking old cholesky for projection.')
|
||||
print("Projection failed, taking old cholesky for projection.")
|
||||
proj_std = old_std
|
||||
raise e
|
||||
|
||||
return proj_std
|
||||
|
||||
|
||||
class KLProjectionGradFunctionCovOnly(torch.autograd.Function):
|
||||
projection_op = None
|
||||
|
||||
@staticmethod
|
||||
def get_projection_op(batch_shape, dim, max_eval=MAX_EVAL):
|
||||
if not KLProjectionGradFunctionCovOnly.projection_op:
|
||||
KLProjectionGradFunctionCovOnly.projection_op = \
|
||||
cpp_projection.BatchedCovOnlyProjection(batch_shape, dim, max_eval=max_eval)
|
||||
return KLProjectionGradFunctionCovOnly.projection_op
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx: Any, *args: Any, **kwargs: Any) -> Any:
|
||||
cov, chol, old_chol, eps_cov = args
|
||||
|
||||
batch_shape = cov.shape[0]
|
||||
dim = cov.shape[-1]
|
||||
|
||||
cov_np = get_numpy(cov)
|
||||
chol_np = get_numpy(chol)
|
||||
old_chol_np = get_numpy(old_chol)
|
||||
eps = get_numpy(eps_cov) * np.ones(batch_shape)
|
||||
|
||||
p_op = KLProjectionGradFunctionCovOnly.get_projection_op(batch_shape, dim)
|
||||
ctx.proj = p_op
|
||||
|
||||
proj_std = p_op.forward(eps, old_chol_np, chol_np, cov_np)
|
||||
|
||||
return cov.new(proj_std)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx: Any, *grad_outputs: Any) -> Any:
|
||||
projection_op = ctx.proj
|
||||
d_cov, = grad_outputs
|
||||
|
||||
d_cov_np = get_numpy(d_cov)
|
||||
d_cov_np = np.atleast_2d(d_cov_np)
|
||||
|
||||
df_stds = projection_op.backward(d_cov_np)
|
||||
df_stds = np.atleast_2d(df_stds)
|
||||
|
||||
df_stds = d_cov.new(df_stds)
|
||||
|
||||
return df_stds, None, None, None
|
||||
|
||||
|
||||
class KLProjectionGradFunctionDiagCovOnly(torch.autograd.Function):
|
||||
projection_op = None
|
||||
|
||||
@staticmethod
|
||||
def get_projection_op(batch_shape, dim, max_eval=MAX_EVAL):
|
||||
if not KLProjectionGradFunctionDiagCovOnly.projection_op:
|
||||
KLProjectionGradFunctionDiagCovOnly.projection_op = \
|
||||
cpp_projection.BatchedDiagCovOnlyProjection(batch_shape, dim, max_eval=max_eval)
|
||||
return KLProjectionGradFunctionDiagCovOnly.projection_op
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx: Any, *args: Any, **kwargs: Any) -> Any:
|
||||
cov, old_cov, eps_cov = args
|
||||
|
||||
batch_shape = cov.shape[0]
|
||||
dim = cov.shape[-1]
|
||||
|
||||
cov_np = get_numpy(cov)
|
||||
old_cov_np = get_numpy(old_cov)
|
||||
eps = get_numpy(eps_cov) * np.ones(batch_shape)
|
||||
|
||||
p_op = KLProjectionGradFunctionDiagCovOnly.get_projection_op(batch_shape, dim)
|
||||
ctx.proj = p_op
|
||||
|
||||
proj_std = p_op.forward(eps, old_cov_np, cov_np)
|
||||
|
||||
return cov.new(proj_std)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx: Any, *grad_outputs: Any) -> Any:
|
||||
projection_op = ctx.proj
|
||||
d_std, = grad_outputs
|
||||
|
||||
d_cov_np = get_numpy(d_std)
|
||||
d_cov_np = np.atleast_2d(d_cov_np)
|
||||
df_stds = projection_op.backward(d_cov_np)
|
||||
df_stds = np.atleast_2d(df_stds)
|
||||
|
||||
return d_std.new(df_stds), None, None
|
56
fancy_rl/projections/wasserstein_projection.py
Normal file
56
fancy_rl/projections/wasserstein_projection.py
Normal file
@ -0,0 +1,56 @@
|
||||
import torch
|
||||
from .base_projection import BaseProjection
|
||||
from typing import Dict, Tuple
|
||||
|
||||
def gaussian_wasserstein_commutative(policy, p: Tuple[torch.Tensor, torch.Tensor],
|
||||
q: Tuple[torch.Tensor, torch.Tensor], scale_prec=False) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
mean, sqrt = p
|
||||
mean_other, sqrt_other = q
|
||||
|
||||
mean_part = torch.sum(torch.square(mean - mean_other), dim=-1)
|
||||
|
||||
cov = torch.matmul(sqrt, sqrt.transpose(-1, -2))
|
||||
cov_other = torch.matmul(sqrt_other, sqrt_other.transpose(-1, -2))
|
||||
|
||||
if scale_prec:
|
||||
identity = torch.eye(mean.shape[-1], dtype=sqrt.dtype, device=sqrt.device)
|
||||
sqrt_inv_other = torch.linalg.solve(sqrt_other, identity)
|
||||
c = sqrt_inv_other @ cov @ sqrt_inv_other
|
||||
cov_part = torch.trace(identity + c - 2 * sqrt_inv_other @ sqrt)
|
||||
else:
|
||||
cov_part = torch.trace(cov_other + cov - 2 * sqrt_other @ sqrt)
|
||||
|
||||
return mean_part, cov_part
|
||||
|
||||
class WassersteinProjection(BaseProjection):
|
||||
def __init__(self, in_keys: list[str], out_keys: list[str], trust_region_coeff: float = 1.0, mean_bound: float = 0.01, cov_bound: float = 0.01, scale_prec: bool = False):
|
||||
super().__init__(in_keys=in_keys, out_keys=out_keys, trust_region_coeff=trust_region_coeff, mean_bound=mean_bound, cov_bound=cov_bound)
|
||||
self.scale_prec = scale_prec
|
||||
|
||||
def project(self, policy_params: Dict[str, torch.Tensor], old_policy_params: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
mean, sqrt = policy_params["loc"], policy_params["scale_tril"]
|
||||
old_mean, old_sqrt = old_policy_params["loc"], old_policy_params["scale_tril"]
|
||||
|
||||
mean_part, cov_part = gaussian_wasserstein_commutative(None, (mean, sqrt), (old_mean, old_sqrt), self.scale_prec)
|
||||
|
||||
proj_mean = self._mean_projection(mean, old_mean, mean_part)
|
||||
proj_sqrt = self._cov_projection(sqrt, old_sqrt, cov_part)
|
||||
|
||||
return {"loc": proj_mean, "scale_tril": proj_sqrt}
|
||||
|
||||
def get_trust_region_loss(self, policy_params: Dict[str, torch.Tensor], proj_policy_params: Dict[str, torch.Tensor]) -> torch.Tensor:
|
||||
mean, sqrt = policy_params["loc"], policy_params["scale_tril"]
|
||||
proj_mean, proj_sqrt = proj_policy_params["loc"], proj_policy_params["scale_tril"]
|
||||
mean_part, cov_part = gaussian_wasserstein_commutative(None, (mean, sqrt), (proj_mean, proj_sqrt), self.scale_prec)
|
||||
w2 = mean_part + cov_part
|
||||
return w2.mean() * self.trust_region_coeff
|
||||
|
||||
def _mean_projection(self, mean: torch.Tensor, old_mean: torch.Tensor, mean_part: torch.Tensor) -> torch.Tensor:
|
||||
diff = mean - old_mean
|
||||
norm = torch.norm(diff, dim=-1, keepdim=True)
|
||||
return torch.where(norm > self.mean_bound, old_mean + diff * self.mean_bound / norm, mean)
|
||||
|
||||
def _cov_projection(self, sqrt: torch.Tensor, old_sqrt: torch.Tensor, cov_part: torch.Tensor) -> torch.Tensor:
|
||||
diff = sqrt - old_sqrt
|
||||
norm = torch.norm(diff, dim=(-2, -1), keepdim=True)
|
||||
return torch.where(norm > self.cov_bound, old_sqrt + diff * self.cov_bound / norm, sqrt)
|
6
fancy_rl/projections_legacy/__init__.py
Normal file
6
fancy_rl/projections_legacy/__init__.py
Normal file
@ -0,0 +1,6 @@
|
||||
try:
|
||||
import cpp_projection
|
||||
except ModuleNotFoundError:
|
||||
from .base_projection_layer import ITPALExceptionLayer as KLProjectionLayer
|
||||
else:
|
||||
from .kl_projection_layer import KLProjectionLayer
|
@ -1,13 +0,0 @@
|
||||
from .base_projection import BaseProjection
|
||||
from .kl_projection import KLProjection
|
||||
from .w2_projection import W2Projection
|
||||
from .frob_projection import FrobProjection
|
||||
from .identity_projection import IdentityProjection
|
||||
|
||||
__all__ = [
|
||||
"BaseProjection",
|
||||
"KLProjection",
|
||||
"W2Projection",
|
||||
"FrobProjection",
|
||||
"IdentityProjection"
|
||||
]
|
@ -1,51 +0,0 @@
|
||||
import torch
|
||||
from torchrl.modules import TensorDictModule
|
||||
from typing import List, Dict, Any
|
||||
|
||||
class BaseProjection(TensorDictModule):
|
||||
def __init__(
|
||||
self,
|
||||
in_keys: List[str],
|
||||
out_keys: List[str],
|
||||
):
|
||||
super().__init__(in_keys=in_keys, out_keys=out_keys)
|
||||
|
||||
def forward(self, tensordict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
mean, std = self.in_keys
|
||||
projected_mean, projected_std = self.out_keys
|
||||
|
||||
old_mean = tensordict[mean]
|
||||
old_std = tensordict[std]
|
||||
|
||||
new_mean = tensordict.get(projected_mean, old_mean)
|
||||
new_std = tensordict.get(projected_std, old_std)
|
||||
|
||||
projected_params = self.project(
|
||||
{"mean": new_mean, "std": new_std},
|
||||
{"mean": old_mean, "std": old_std}
|
||||
)
|
||||
|
||||
tensordict[projected_mean] = projected_params["mean"]
|
||||
tensordict[projected_std] = projected_params["std"]
|
||||
|
||||
return tensordict
|
||||
|
||||
def project(self, policy_params: Dict[str, torch.Tensor], old_policy_params: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
raise NotImplementedError("Subclasses must implement the project method")
|
||||
|
||||
@classmethod
|
||||
def make(cls, projection_type: str, **kwargs: Any) -> 'BaseProjection':
|
||||
if projection_type == "kl":
|
||||
from .kl_projection import KLProjection
|
||||
return KLProjection(**kwargs)
|
||||
elif projection_type == "w2":
|
||||
from .w2_projection import W2Projection
|
||||
return W2Projection(**kwargs)
|
||||
elif projection_type == "frob":
|
||||
from .frob_projection import FrobProjection
|
||||
return FrobProjection(**kwargs)
|
||||
elif projection_type == "identity":
|
||||
from .identity_projection import IdentityProjection
|
||||
return IdentityProjection(**kwargs)
|
||||
else:
|
||||
raise ValueError(f"Unknown projection type: {projection_type}")
|
@ -1,22 +0,0 @@
|
||||
import torch
|
||||
from .base_projection import BaseProjection
|
||||
from typing import Dict
|
||||
|
||||
class FrobProjection(BaseProjection):
|
||||
def __init__(self, in_keys: list[str], out_keys: list[str], epsilon: float = 1e-3):
|
||||
super().__init__(in_keys=in_keys, out_keys=out_keys)
|
||||
self.epsilon = epsilon
|
||||
|
||||
def project(self, policy_params: Dict[str, torch.Tensor], old_policy_params: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
projected_params = {}
|
||||
for key in policy_params.keys():
|
||||
old_param = old_policy_params[key]
|
||||
new_param = policy_params[key]
|
||||
diff = new_param - old_param
|
||||
norm = torch.norm(diff)
|
||||
if norm > self.epsilon:
|
||||
projected_param = old_param + (self.epsilon / norm) * diff
|
||||
else:
|
||||
projected_param = new_param
|
||||
projected_params[key] = projected_param
|
||||
return projected_params
|
@ -1,11 +0,0 @@
|
||||
import torch
|
||||
from .base_projection import BaseProjection
|
||||
from typing import Dict
|
||||
|
||||
class IdentityProjection(BaseProjection):
|
||||
def __init__(self, in_keys: list[str], out_keys: list[str]):
|
||||
super().__init__(in_keys=in_keys, out_keys=out_keys)
|
||||
|
||||
def project(self, policy_params: Dict[str, torch.Tensor], old_policy_params: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
# The identity projection simply returns the new policy parameters without any modification
|
||||
return policy_params
|
@ -1,33 +0,0 @@
|
||||
import torch
|
||||
from typing import Dict, List
|
||||
from .base_projection import BaseProjection
|
||||
|
||||
class KLProjection(BaseProjection):
|
||||
def __init__(
|
||||
self,
|
||||
in_keys: List[str] = ["mean", "std"],
|
||||
out_keys: List[str] = ["projected_mean", "projected_std"],
|
||||
epsilon: float = 0.1
|
||||
):
|
||||
super().__init__(in_keys=in_keys, out_keys=out_keys)
|
||||
self.epsilon = epsilon
|
||||
|
||||
def project(self, policy_params: Dict[str, torch.Tensor], old_policy_params: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
new_mean, new_std = policy_params["mean"], policy_params["std"]
|
||||
old_mean, old_std = old_policy_params["mean"], old_policy_params["std"]
|
||||
|
||||
diff = new_mean - old_mean
|
||||
std_diff = new_std - old_std
|
||||
|
||||
kl = 0.5 * (torch.sum(torch.square(diff / old_std), dim=-1) +
|
||||
torch.sum(torch.square(std_diff / old_std), dim=-1) -
|
||||
new_mean.shape[-1] +
|
||||
torch.sum(torch.log(new_std / old_std), dim=-1))
|
||||
|
||||
factor = torch.sqrt(self.epsilon / (kl + 1e-8))
|
||||
factor = torch.clamp(factor, max=1.0)
|
||||
|
||||
projected_mean = old_mean + factor.unsqueeze(-1) * diff
|
||||
projected_std = old_std + factor.unsqueeze(-1) * std_diff
|
||||
|
||||
return {"mean": projected_mean, "std": projected_std}
|
@ -1,73 +0,0 @@
|
||||
import torch
|
||||
from .base_projection import BaseProjection
|
||||
from typing import Dict, Tuple
|
||||
from torchrl.modules import TensorDictModule
|
||||
from torchrl.distributions import TanhNormal, Delta
|
||||
|
||||
class W2Projection(BaseProjection):
|
||||
def __init__(self,
|
||||
in_keys: list[str],
|
||||
out_keys: list[str],
|
||||
scale_prec: bool = False):
|
||||
super().__init__(in_keys=in_keys, out_keys=out_keys)
|
||||
self.scale_prec = scale_prec
|
||||
|
||||
def project(self, policy_params: Dict[str, torch.Tensor], old_policy_params: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
projected_params = {}
|
||||
for key in policy_params.keys():
|
||||
if key.endswith('.loc'):
|
||||
mean = policy_params[key]
|
||||
old_mean = old_policy_params[key]
|
||||
std_key = key.replace('.loc', '.scale')
|
||||
std = policy_params[std_key]
|
||||
old_std = old_policy_params[std_key]
|
||||
|
||||
projected_mean, projected_std = self._trust_region_projection(
|
||||
mean, std, old_mean, old_std
|
||||
)
|
||||
|
||||
projected_params[key] = projected_mean
|
||||
projected_params[std_key] = projected_std
|
||||
elif not key.endswith('.scale'):
|
||||
projected_params[key] = policy_params[key]
|
||||
|
||||
return projected_params
|
||||
|
||||
def _trust_region_projection(self, mean: torch.Tensor, std: torch.Tensor,
|
||||
old_mean: torch.Tensor, old_std: torch.Tensor,
|
||||
eps: float = 1e-3, eps_cov: float = 1e-3) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
mean_part, cov_part = self._gaussian_wasserstein_commutative(mean, std, old_mean, old_std)
|
||||
|
||||
# Project mean
|
||||
mean_mask = mean_part > eps
|
||||
proj_mean = torch.where(mean_mask,
|
||||
old_mean + (mean - old_mean) * torch.sqrt(eps / mean_part)[..., None],
|
||||
mean)
|
||||
|
||||
# Project covariance
|
||||
cov_mask = cov_part > eps_cov
|
||||
eta = torch.ones_like(cov_part)
|
||||
eta[cov_mask] = torch.sqrt(cov_part[cov_mask] / eps_cov) - 1.
|
||||
eta = torch.clamp(eta, -0.9, float('inf')) # Avoid negative values that could lead to invalid standard deviations
|
||||
|
||||
proj_std = (std + eta[..., None] * old_std) / (1. + eta[..., None] + 1e-8)
|
||||
|
||||
return proj_mean, proj_std
|
||||
|
||||
def _gaussian_wasserstein_commutative(self, mean: torch.Tensor, std: torch.Tensor,
|
||||
old_mean: torch.Tensor, old_std: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if self.scale_prec:
|
||||
# Mahalanobis distance for mean
|
||||
mean_part = ((mean - old_mean) ** 2 / (old_std ** 2 + 1e-8)).sum(-1)
|
||||
else:
|
||||
# Euclidean distance for mean
|
||||
mean_part = ((mean - old_mean) ** 2).sum(-1)
|
||||
|
||||
# W2 objective for covariance
|
||||
cov_part = (std ** 2 + old_std ** 2 - 2 * std * old_std).sum(-1)
|
||||
|
||||
return mean_part, cov_part
|
||||
|
||||
@classmethod
|
||||
def make(cls, in_keys: list[str], out_keys: list[str], **kwargs) -> 'W2Projection':
|
||||
return cls(in_keys=in_keys, out_keys=out_keys, **kwargs)
|
Loading…
Reference in New Issue
Block a user