Worked on TRPL module

This commit is contained in:
Dominik Moritz Roth 2024-06-02 14:14:12 +02:00
parent 65c6a950aa
commit 7861821d0d

View File

@ -1,11 +1,11 @@
import torch import torch
from torchrl.modules import ActorValueOperator, ProbabilisticActor from torchrl.modules import ProbabilisticActor
from torchrl.objectives.value.advantages import GAE from torchrl.objectives.value.advantages import GAE
from fancy_rl.algos.on_policy import OnPolicy from fancy_rl.algos.on_policy import OnPolicy
from fancy_rl.policy import Actor, Critic, SharedModule from fancy_rl.policy import Actor, Critic
from fancy_rl.objectives import TRPLLoss from fancy_rl.objectives import TRPLLoss
class TRPL(OnPolicy): class PPO(OnPolicy):
def __init__( def __init__(
self, self,
env_spec, env_spec,
@ -14,7 +14,6 @@ class TRPL(OnPolicy):
critic_hidden_sizes=[64, 64], critic_hidden_sizes=[64, 64],
actor_activation_fn="Tanh", actor_activation_fn="Tanh",
critic_activation_fn="Tanh", critic_activation_fn="Tanh",
shared_stem_sizes=[64],
proj_layer_type=None, proj_layer_type=None,
learning_rate=3e-4, learning_rate=3e-4,
n_steps=2048, n_steps=2048,
@ -28,14 +27,16 @@ class TRPL(OnPolicy):
entropy_coef=0.01, entropy_coef=0.01,
critic_coef=0.5, critic_coef=0.5,
trust_region_coef=10.0, trust_region_coef=10.0,
normalize_advantage=True, normalize_advantage=False,
device=None, device=None,
env_spec_eval=None, env_spec_eval=None,
eval_episodes=10, eval_episodes=10,
): ):
device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu") device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.device = device
self.trust_region_layer = None # from proj_layer_type self.trust_region_layer = None # TODO: from proj_layer_type
self.trust_region_coef = trust_region_coef
# Initialize environment to get observation and action space sizes # Initialize environment to get observation and action space sizes
self.env_spec = env_spec self.env_spec = env_spec
@ -43,55 +44,23 @@ class TRPL(OnPolicy):
obs_space = env.observation_space obs_space = env.observation_space
act_space = env.action_space act_space = env.action_space
# Define the shared, actor, and critic modules self.critic = Critic(obs_space, critic_hidden_sizes, critic_activation_fn, device)
self.shared_module = SharedModule(obs_space, shared_stem_sizes, actor_activation_fn, device) actor_net = Actor(obs_space, act_space, actor_hidden_sizes, actor_activation_fn, device)
self.raw_actor = Actor(self.shared_module, act_space, actor_hidden_sizes, actor_activation_fn, device) raw_actor = ProbabilisticActor(
self.critic = Critic(self.shared_module, critic_hidden_sizes, critic_activation_fn, device) module=actor_net,
# Perfrom projection
self.actor = self.raw_actor # TODO: Project
# Combine into an ActorValueOperator
self.ac_module = ActorValueOperator(
self.shared_module,
self.actor,
self.critic
)
# Define the policy as a ProbabilisticActor
policy = ProbabilisticActor(
module=self.ac_module.get_policy_operator(),
in_keys=["loc", "scale"], in_keys=["loc", "scale"],
out_keys=["action"], out_keys=["action"],
distribution_class=torch.distributions.Normal, distribution_class=torch.distributions.Normal,
return_log_prob=True return_log_prob=True
) )
self.actor = raw_actor # TODO: Proj here
optimizers = { optimizers = {
"actor": torch.optim.Adam(self.actor.parameters(), lr=learning_rate), "actor": torch.optim.Adam(self.actor.parameters(), lr=learning_rate),
"critic": torch.optim.Adam(self.critic.parameters(), lr=learning_rate) "critic": torch.optim.Adam(self.critic.parameters(), lr=learning_rate)
} }
self.adv_module = GAE(
gamma=self.gamma,
lmbda=self.gae_lambda,
value_network=self.critic,
average_gae=False,
)
self.loss_module = TRPLLoss(
actor_network=self.actor,
critic_network=self.critic,
trust_region_layer=self.trust_region_layer,
loss_critic_type='MSELoss',
entropy_coef=self.entropy_coef,
critic_coef=self.critic_coef,
trust_region_coef=self.trust_region_coef,
normalize_advantage=self.normalize_advantage,
)
super().__init__( super().__init__(
policy=policy,
env_spec=env_spec, env_spec=env_spec,
loggers=loggers, loggers=loggers,
optimizers=optimizers, optimizers=optimizers,
@ -100,15 +69,31 @@ class TRPL(OnPolicy):
batch_size=batch_size, batch_size=batch_size,
n_epochs=n_epochs, n_epochs=n_epochs,
gamma=gamma, gamma=gamma,
gae_lambda=gae_lambda,
total_timesteps=total_timesteps, total_timesteps=total_timesteps,
eval_interval=eval_interval, eval_interval=eval_interval,
eval_deterministic=eval_deterministic, eval_deterministic=eval_deterministic,
entropy_coef=entropy_coef, entropy_coef=entropy_coef,
critic_coef=critic_coef, critic_coef=critic_coef,
normalize_advantage=normalize_advantage, normalize_advantage=normalize_advantage,
clip_range=clip_range,
device=device, device=device,
env_spec_eval=env_spec_eval, env_spec_eval=env_spec_eval,
eval_episodes=eval_episodes, eval_episodes=eval_episodes,
) )
self.adv_module = GAE(
gamma=self.gamma,
lmbda=gae_lambda,
value_network=self.critic,
average_gae=False,
)
self.loss_module = TRPLLoss(
actor_network=self.actor,
critic_network=self.critic,
trust_region_layer=self.trust_region_layer,
loss_critic_type='l2',
entropy_coef=self.entropy_coef,
critic_coef=self.critic_coef,
trust_region_coef=self.trust_region_coef,
normalize_advantage=self.normalize_advantage,
)