projections_legacy no longer requierd

This commit is contained in:
Dominik Moritz Roth 2024-08-28 11:34:26 +02:00
parent 9c55b6a110
commit ebff2551cd
6 changed files with 0 additions and 755 deletions

View File

@ -1,6 +0,0 @@
try:
import cpp_projection
except ModuleNotFoundError:
from .base_projection_layer import ITPALExceptionLayer as KLProjectionLayer
else:
from .kl_projection_layer import KLProjectionLayer

View File

@ -1,191 +0,0 @@
from typing import Any, Dict, Optional, Type, Union, Tuple, final
import torch as th
from fancy_rl.norm import *
class BaseProjectionLayer(object):
def __init__(self,
mean_bound: float = 0.03,
cov_bound: float = 1e-3,
trust_region_coeff: float = 1.0,
scale_prec: bool = False,
):
self.mean_bound = mean_bound
self.cov_bound = cov_bound
self.trust_region_coeff = trust_region_coeff
self.scale_prec = scale_prec
self.mean_eq = False
def __call__(self, p, q, **kwargs):
return self._projection(p, q, eps=self.mean_bound, eps_cov=self.cov_bound, beta=None, **kwargs)
@final
def _projection(self, p, q, eps: th.Tensor, eps_cov: th.Tensor, beta: th.Tensor, **kwargs):
return self._trust_region_projection(
p, q, eps, eps_cov, **kwargs)
def _trust_region_projection(self, p, q, eps: th.Tensor, eps_cov: th.Tensor, **kwargs):
"""
Hook for implementing the specific trust region projection
Args:
p: current distribution
q: old distribution
eps: mean trust region bound
eps_cov: covariance trust region bound
**kwargs:
Returns:
projected
"""
return p
def get_trust_region_loss(self, p, proj_p):
# p:
# predicted distribution from network output
# proj_p:
# projected distribution
proj_mean, proj_chol = get_mean_and_chol(proj_p)
p_target = new_dist_like(p, proj_mean, proj_chol)
kl_diff = self.trust_region_value(p, p_target)
kl_loss = kl_diff.mean()
return kl_loss * self.trust_region_coeff
def trust_region_value(self, p, q):
"""
Computes the KL divergence between two Gaussian distributions p and q_values.
Returns:
full kl divergence
"""
return kl_divergence(p, q)
def new_dist_like(self, orig_p, mean, cov_cholesky):
assert isinstance(orig_p, Distribution)
p = orig_p.distribution
if isinstance(p, th.distributions.Normal):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.Normal(mean, cov_cholesky)
elif isinstance(p, th.distributions.Independent):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.Independent(
th.distributions.Normal(mean, cov_cholesky), 1)
elif isinstance(p, th.distributions.MultivariateNormal):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.MultivariateNormal(
mean, scale_tril=cov_cholesky)
else:
raise Exception('Dist-Type not implemented (of sb3 dist)')
return p_out
def entropy_inequality_projection(p: th.distributions.Normal,
beta: Union[float, th.Tensor]):
"""
Projects std to satisfy an entropy INEQUALITY constraint.
Args:
p: current distribution
beta: target entropy for EACH std or general bound for all stds
Returns:
projected std that satisfies the entropy bound
"""
mean, std = p.mean, p.stddev
k = std.shape[-1]
batch_shape = std.shape[:-2]
ent = p.entropy()
mask = ent < beta
# if nothing has to be projected skip computation
if (~mask).all():
return p
alpha = th.ones(batch_shape, dtype=std.dtype, device=std.device)
alpha[mask] = th.exp((beta[mask] - ent[mask]) / k)
proj_std = th.einsum('ijk,i->ijk', std, alpha)
new_mean, new_std = mean, th.where(mask[..., None, None], proj_std, std)
return th.distributions.Normal(new_mean, new_std)
def entropy_equality_projection(p: th.distributions.Normal,
beta: Union[float, th.Tensor]):
"""
Projects std to satisfy an entropy EQUALITY constraint.
Args:
p: current distribution
beta: target entropy for EACH std or general bound for all stds
Returns:
projected std that satisfies the entropy bound
"""
mean, std = p.mean, p.stddev
k = std.shape[-1]
ent = p.entropy()
alpha = th.exp((beta - ent) / k)
proj_std = th.einsum('ijk,i->ijk', std, alpha)
new_mean, new_std = mean, proj_std
return th.distributions.Normal(new_mean, new_std)
def mean_projection(mean: th.Tensor, old_mean: th.Tensor, maha: th.Tensor, eps: th.Tensor):
"""
Projects the mean based on the Mahalanobis objective and trust region.
Args:
mean: current mean vectors
old_mean: old mean vectors
maha: Mahalanobis distance between the two mean vectors
eps: trust region bound
Returns:
projected mean that satisfies the trust region
"""
batch_shape = mean.shape[:-1]
mask = maha > eps
################################################################################################################
# mean projection maha
# if nothing has to be projected skip computation
if mask.any():
omega = th.ones(batch_shape, dtype=mean.dtype, device=mean.device)
omega[mask] = th.sqrt(maha[mask] / eps) - 1.
omega = th.max(-omega, omega)[..., None]
m = (mean + omega * old_mean) / (1 + omega + 1e-16)
proj_mean = th.where(mask[..., None], m, mean)
else:
proj_mean = mean
return proj_mean
def mean_equality_projection(mean: th.Tensor, old_mean: th.Tensor, maha: th.Tensor, eps: th.Tensor):
"""
Projections the mean based on the Mahalanobis objective and trust region for an EQUALITY constraint.
Args:
mean: current mean vectors
old_mean: old mean vectors
maha: Mahalanobis distance between the two mean vectors
eps: trust region bound
Returns:
projected mean that satisfies the trust region
"""
maha[maha == 0] += 1e-16
omega = th.sqrt(maha / eps) - 1.
omega = omega[..., None]
proj_mean = (mean + omega * old_mean) / (1 + omega + 1e-16)
return proj_mean
class ITPALExceptionLayer(BaseProjectionLayer):
def __init__(self,
*args, **kwargs
):
raise Exception('To be able to use KL projections, ITPAL must be installed: https://github.com/ALRhub/ITPAL.')

View File

@ -1,133 +0,0 @@
import torch as th
from typing import Tuple
from .base_projection_layer import BaseProjectionLayer, mean_projection
from ..misc.norm import mahalanobis, frob_sq
from ..misc.distTools import get_mean_and_chol, get_cov, new_dist_like, has_diag_cov
class FrobeniusProjectionLayer(BaseProjectionLayer):
def _trust_region_projection(self, p, q, eps: th.Tensor, eps_cov: th.Tensor, **kwargs):
"""
Stolen from Fabian's Code (Public Version)
Runs Frobenius projection layer and constructs cholesky of covariance
Args:
policy: policy instance
p: current distribution
q: old distribution
eps: (modified) kl bound/ kl bound for mean part
eps_cov: (modified) kl bound for cov part
beta: (modified) entropy bound
**kwargs:
Returns: mean, cov cholesky
"""
mean, chol = get_mean_and_chol(p, expand=True)
old_mean, old_chol = get_mean_and_chol(q, expand=True)
batch_shape = mean.shape[:-1]
####################################################################################################################
# precompute mean and cov part of frob projection, which are used for the projection.
mean_part, cov_part, cov, cov_old = gaussian_frobenius(
p, q, self.scale_prec, True)
################################################################################################################
# mean projection maha/euclidean
proj_mean = mean_projection(mean, old_mean, mean_part, eps)
################################################################################################################
# cov projection frobenius
cov_mask = cov_part > eps_cov
if cov_mask.any():
eta = th.ones(batch_shape, dtype=chol.dtype, device=chol.device)
eta[cov_mask] = th.sqrt(cov_part[cov_mask] / eps_cov) - 1.
eta = th.max(-eta, eta)
new_cov = (cov + th.einsum('i,ijk->ijk', eta, cov_old)
) / (1. + eta + 1e-16)[..., None, None]
proj_chol = th.where(
cov_mask[..., None, None], th.linalg.cholesky(new_cov), chol)
else:
proj_chol = chol
if has_diag_cov(p):
proj_chol = th.diagonal(proj_chol, dim1=-2, dim2=-1)
proj_p = new_dist_like(p, proj_mean, proj_chol)
return proj_p
def trust_region_value(self, p, q):
"""
Stolen from Fabian's Code (Public Version)
Computes the Frobenius metric between two Gaussian distributions p and q.
Args:
policy: policy instance
p: current distribution
q: old distribution
Returns:
mean and covariance part of Frobenius metric
"""
return gaussian_frobenius(p, q, self.scale_prec)
def get_trust_region_loss(self, p, proj_p):
"""
Stolen from Fabian's Code (Public Version)
"""
mean_diff, _ = self.trust_region_value(p, proj_p)
if False and policy.contextual_std:
# Compute MSE here, because we found the Frobenius norm tends to generate values that explode for the cov
p_mean, proj_p_mean = p.mean, proj_p.mean
cov_diff = (p_mean - proj_p_mean).pow(2).sum([-1, -2])
delta_loss = (mean_diff + cov_diff).mean()
else:
delta_loss = mean_diff.mean()
return delta_loss * self.trust_region_coeff
def gaussian_frobenius(p, q, scale_prec: bool = False, return_cov: bool = False):
"""
Stolen from Fabian' Code (Public Version)
Compute (p - q_values) (L_oL_o^T)^-1 (p - 1)^T + |LL^T - L_oL_o^T|_F^2 with p,q_values ~ N(y, LL^T)
Args:
policy: current policy
p: mean and chol of gaussian p
q: mean and chol of gaussian q_values
return_cov: return cov matrices for further computations
scale_prec: scale objective with precision matrix
Returns: mahalanobis distance, squared frobenius norm
"""
mean, chol = get_mean_and_chol(p)
mean_other, chol_other = get_mean_and_chol(q)
if scale_prec:
# maha objective for mean
mean_part = mahalanobis(mean, mean_other, chol_other)
else:
# euclidean distance for mean
# mean_part = ch.norm(mean_other - mean, ord=2, axis=1) ** 2
mean_part = ((mean_other - mean) ** 2).sum(1)
# frob objective for cov
cov = get_cov(p)
cov_other = get_cov(q)
diff = cov_other - cov
# Matrix is real symmetric PSD, therefore |A @ A^H|^2_F = tr{A @ A^H} = tr{A @ A}
#cov_part = torch_batched_trace(diff @ diff)
cov_part = frob_sq(diff, is_spd=True)
if return_cov:
return mean_part, cov_part, cov, cov_other
return mean_part, cov_part

View File

@ -1,5 +0,0 @@
from .base_projection_layer import BaseProjectionLayer
class IdentityProjectionLayer(BaseProjectionLayer):
def project_from_rollouts(self, dist, rollout_data, **kwargs):
return dist, dist

View File

@ -1,256 +0,0 @@
from ..misc.distTools import get_diag_cov_vec, get_mean_and_chol, get_cov, is_contextual, new_dist_like, has_diag_cov
from .base_projection_layer import BaseProjectionLayer, mean_projection, mean_equality_projection
import cpp_projection
import numpy as np
import torch as th
from typing import Tuple, Any
from ..misc.norm import mahalanobis
MAX_EVAL = 1000
class KLProjectionLayer(BaseProjectionLayer):
"""
Stolen from Fabian's Code (Private Version)
"""
def _trust_region_projection(self, p, q, eps: th.Tensor, eps_cov: th.Tensor, **kwargs):
"""
Stolen from Fabian's Code (Private Version)
runs kl projection layer and constructs sqrt of covariance
Args:
**kwargs:
policy: policy instance
p: current distribution
q: old distribution
eps: (modified) kl bound/ kl bound for mean part
eps_cov: (modified) kl bound for cov part
Returns:
mean, cov sqrt
"""
mean, chol = get_mean_and_chol(p, expand=True)
old_mean, old_chol = get_mean_and_chol(q, expand=True)
################################################################################################################
# project mean with closed form
# orig code: mean_part, _ = gaussian_kl(policy, p, q)
# But the mean_part is just the mahalanobis dist:
mean_part = mahalanobis(mean, old_mean, old_chol)
if self.mean_eq:
proj_mean = mean_equality_projection(
mean, old_mean, mean_part, eps)
else:
proj_mean = mean_projection(mean, old_mean, mean_part, eps)
if has_diag_cov(p):
cov_diag = get_diag_cov_vec(p)
old_cov_diag = get_diag_cov_vec(q)
proj_cov = KLProjectionGradFunctionDiagCovOnly.apply(cov_diag,
old_cov_diag,
eps_cov)
proj_chol = proj_cov.sqrt() # .diag_embed()
else:
cov = get_cov(p)
old_cov = get_cov(q)
proj_cov = KLProjectionGradFunctionCovOnly.apply(
cov, old_cov, chol, old_chol, eps_cov)
proj_chol = th.linalg.cholesky(proj_cov)
proj_p = new_dist_like(p, proj_mean, proj_chol)
return proj_p
class KLProjectionGradFunctionCovOnly(th.autograd.Function):
projection_op = None
@staticmethod
def get_projection_op(batch_shape, dim, max_eval=MAX_EVAL):
if not KLProjectionGradFunctionCovOnly.projection_op:
KLProjectionGradFunctionCovOnly.projection_op = \
cpp_projection.BatchedCovOnlyProjection(
batch_shape, dim, max_eval=max_eval)
return KLProjectionGradFunctionCovOnly.projection_op
@staticmethod
def forward(ctx: Any, *args: Any, **kwargs: Any) -> Any:
#std, old_std, eps_cov = args
cov, old_cov, chol, old_chol, eps_cov = args
batch_shape = chol.shape[0]
dim = chol.shape[-1]
cov_np = cov.cpu().detach().numpy()
old_cov_np = old_cov.cpu().detach().numpy()
chol_np = chol.cpu().detach().numpy()
old_chol_np = old_chol.cpu().detach().numpy()
# eps = eps_cov.cpu().detach().numpy().astype(old_std_np.dtype) * \
eps = eps_cov * \
np.ones(batch_shape, dtype=old_chol_np.dtype)
p_op = KLProjectionGradFunctionCovOnly.get_projection_op(
batch_shape, dim)
ctx.proj = p_op
proj_cov = p_op.forward(eps, old_chol_np, chol_np, cov_np)
return th.Tensor(proj_cov)
@staticmethod
def backward(ctx: Any, *grad_outputs: Any) -> Any:
projection_op = ctx.proj
d_std, = grad_outputs
d_std_np = d_std.cpu().detach().numpy()
d_std_np = np.atleast_2d(d_std_np)
df_stds = projection_op.backward(d_std_np)
df_stds = np.atleast_2d(df_stds)
return d_std.new(df_stds), None, None, None, None
class KLProjectionGradFunctionDiagCovOnly(th.autograd.Function):
projection_op = None
@staticmethod
def get_projection_op(batch_shape, dim: int, max_eval: int = MAX_EVAL):
if not KLProjectionGradFunctionDiagCovOnly.projection_op:
KLProjectionGradFunctionDiagCovOnly.projection_op = \
cpp_projection.BatchedDiagCovOnlyProjection(
batch_shape, dim, max_eval=max_eval)
return KLProjectionGradFunctionDiagCovOnly.projection_op
@staticmethod
def forward(ctx: Any, *args: Any, **kwargs: Any) -> Any:
cov, old_std_np, eps_cov = args
batch_shape = cov.shape[0]
dim = cov.shape[-1]
std_np = cov.to('cpu').detach().numpy()
old_std_np = old_std_np.to('cpu').detach().numpy()
# eps = eps_cov.to('cpu').detach().numpy().astype(old_std_np.dtype) * np.ones(batch_shape, dtype=old_std_np.dtype)
eps = eps_cov * np.ones(batch_shape, dtype=old_std_np.dtype)
p_op = KLProjectionGradFunctionDiagCovOnly.get_projection_op(
batch_shape, dim)
ctx.proj = p_op
try:
proj_std = p_op.forward(eps, old_std_np, std_np)
except:
proj_std = std_np
return cov.new(proj_std)
@staticmethod
def backward(ctx: Any, *grad_outputs: Any) -> Any:
projection_op = ctx.proj
d_std, = grad_outputs
d_std_np = d_std.to('cpu').detach().numpy()
d_std_np = np.atleast_2d(d_std_np)
df_stds = projection_op.backward(d_std_np)
df_stds = np.atleast_2d(df_stds)
return d_std.new(df_stds), None, None
class KLProjectionGradFunctionDiagSplit(th.autograd.Function):
projection_op = None
@staticmethod
def get_projection_op(batch_shape, dim: int, max_eval: int = MAX_EVAL):
if not KLProjectionGradFunctionDiagSplit.projection_op:
KLProjectionGradFunctionDiagSplit.projection_op = \
cpp_projection.BatchedSplitDiagMoreProjection(
batch_shape, dim, max_eval=max_eval)
return KLProjectionGradFunctionDiagSplit.projection_op
@staticmethod
def forward(ctx: Any, *args: Any, **kwargs: Any) -> Any:
mean, cov, old_mean, old_cov, eps_mu, eps_sigma = args
batch_shape, dim = mean.shape
mean_np = mean.detach().numpy()
cov_np = cov.detach().numpy()
old_mean = old_mean.detach().numpy()
old_cov = old_cov.detach().numpy()
eps_mu = eps_mu * np.ones(batch_shape)
eps_sigma = eps_sigma * np.ones(batch_shape)
# p_op = cpp_projection.BatchedSplitDiagMoreProjection(batch_shape, dim, max_eval=100)
p_op = KLProjectionGradFunctionDiagSplit.get_projection_op(
batch_shape, dim)
try:
proj_mean, proj_cov = p_op.forward(
eps_mu, eps_sigma, old_mean, old_cov, mean_np, cov_np)
except Exception:
# try a second time
proj_mean, proj_cov = p_op.forward(
eps_mu, eps_sigma, old_mean, old_cov, mean_np, cov_np)
ctx.proj = p_op
return mean.new(proj_mean), cov.new(proj_cov)
@staticmethod
def backward(ctx: Any, *grad_outputs: Any) -> Any:
p_op = ctx.proj
d_means, d_std = grad_outputs
d_std_np = d_std.detach().numpy()
d_std_np = np.atleast_2d(d_std_np)
d_mean_np = d_means.detach().numpy()
dtarget_means, dtarget_covs = p_op.backward(d_mean_np, d_std_np)
dtarget_covs = np.atleast_2d(dtarget_covs)
return d_means.new(dtarget_means), d_std.new(dtarget_covs), None, None, None, None
class KLProjectionGradFunctionJoint(th.autograd.Function):
projection_op = None
@staticmethod
def get_projection_op(batch_shape, dim: int, max_eval: int = MAX_EVAL):
if not KLProjectionGradFunctionJoint.projection_op:
KLProjectionGradFunctionJoint.projection_op = \
cpp_projection.BatchedProjection(batch_shape, dim, eec=False, constrain_entropy=False,
max_eval=max_eval)
return KLProjectionGradFunctionJoint.projection_op
@staticmethod
def forward(ctx: Any, *args: Any, **kwargs: Any) -> Any:
mean, cov, old_mean, old_cov, eps, beta = args
batch_shape, dim = mean.shape
mean_np = mean.detach().numpy()
cov_np = cov.detach().numpy()
old_mean = old_mean.detach().numpy()
old_cov = old_cov.detach().numpy()
eps = eps * np.ones(batch_shape)
beta = beta.detach().numpy() * np.ones(batch_shape)
# projection_op = cpp_projection.BatchedProjection(batch_shape, dim, eec=False, constrain_entropy=False)
# ctx.proj = projection_op
p_op = KLProjectionGradFunctionJoint.get_projection_op(
batch_shape, dim)
ctx.proj = p_op
proj_mean, proj_cov = p_op.forward(
eps, beta, old_mean, old_cov, mean_np, cov_np)
return mean.new(proj_mean), cov.new(proj_cov)
@staticmethod
def backward(ctx: Any, *grad_outputs: Any) -> Any:
projection_op = ctx.proj
d_means, d_covs = grad_outputs
df_means, df_covs = projection_op.backward(
d_means.detach().numpy(), d_covs.detach().numpy())
return d_means.new(df_means), d_means.new(df_covs), None, None, None, None

View File

@ -1,164 +0,0 @@
import numpy as np
import torch as th
from typing import Tuple, Any
from ..misc.norm import mahalanobis
from .base_projection_layer import BaseProjectionLayer, mean_projection
from ..misc.norm import mahalanobis, _batch_trace
from ..misc.distTools import get_diag_cov_vec, get_mean_and_chol, get_mean_and_sqrt, get_cov, has_diag_cov
from stable_baselines3.common.distributions import Distribution
class WassersteinProjectionLayer(BaseProjectionLayer):
"""
Stolen from Fabian's Code (Public Version)
"""
def _trust_region_projection(self, p, q, eps: th.Tensor, eps_cov: th.Tensor, **kwargs):
"""
Runs commutative Wasserstein projection layer and constructs sqrt of covariance
Args:
policy: policy instance
p: current distribution
q: old distribution
eps: (modified) kl bound/ kl bound for mean part
eps_cov: (modified) kl bound for cov part
**kwargs:
Returns:
mean, cov sqrt
"""
mean, sqrt = get_mean_and_sqrt(p, expand=True)
old_mean, old_sqrt = get_mean_and_sqrt(q, expand=True)
batch_shape = mean.shape[:-1]
####################################################################################################################
# precompute mean and cov part of W2, which are used for the projection.
# Both parts differ based on precision scaling.
# If activated, the mean part is the maha distance and the cov has a more complex term in the inner parenthesis.
mean_part, cov_part = gaussian_wasserstein_commutative(
p, q, self.scale_prec)
####################################################################################################################
# project mean (w/ or w/o precision scaling)
proj_mean = mean_projection(mean, old_mean, mean_part, eps)
####################################################################################################################
# project covariance (w/ or w/o precision scaling)
cov_mask = cov_part > eps_cov
if cov_mask.any():
# gradient issue with ch.where, it executes both paths and gives NaN gradient.
eta = th.ones(batch_shape, dtype=sqrt.dtype, device=sqrt.device)
eta[cov_mask] = th.sqrt(cov_part[cov_mask] / eps_cov) - 1.
eta = th.max(-eta, eta)
new_sqrt = (sqrt + th.einsum('i,ijk->ijk', eta, old_sqrt)
) / (1. + eta + 1e-16)[..., None, None]
proj_sqrt = th.where(cov_mask[..., None, None], new_sqrt, sqrt)
else:
proj_sqrt = sqrt
if has_diag_cov(p):
proj_sqrt = th.diagonal(proj_sqrt, dim1=-2, dim2=-1)
proj_p = self.new_dist_like(p, proj_mean, proj_sqrt)
return proj_p
def trust_region_value(self, p, q):
"""
Computes the Wasserstein distance between two Gaussian distributions p and q.
Args:
policy: policy instance
p: current distribution
q: old distribution
Returns:
mean and covariance part of Wasserstein distance
"""
mean_part, cov_part = gaussian_wasserstein_commutative(
p, q, scale_prec=self.scale_prec)
return mean_part + cov_part
def get_trust_region_loss(self, p, proj_p):
# p:
# predicted distribution from network output
# proj_p:
# projected distribution
proj_mean, proj_sqrt = get_mean_and_sqrt(proj_p)
p_target = self.new_dist_like(p, proj_mean, proj_sqrt)
kl_diff = self.trust_region_value(p, p_target)
kl_loss = kl_diff.mean()
return kl_loss * self.trust_region_coeff
def new_dist_like(self, orig_p, mean, cov_sqrt):
assert isinstance(orig_p, Distribution)
p = orig_p.distribution
if isinstance(p, th.distributions.Normal):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.Normal(mean, cov_sqrt)
elif isinstance(p, th.distributions.Independent):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.Independent(
th.distributions.Normal(mean, cov_sqrt), 1)
elif isinstance(p, th.distributions.MultivariateNormal):
p_out = orig_p.__class__(orig_p.action_dim)
p_out.distribution = th.distributions.MultivariateNormal(
mean, scale_tril=cov_sqrt, validate_args=False)
else:
raise Exception('Dist-Type not implemented (of sb3 dist)')
p_out.cov_sqrt = cov_sqrt
return p_out
def gaussian_wasserstein_commutative(p, q, scale_prec=False) -> Tuple[th.Tensor, th.Tensor]:
"""
Compute mean part and cov part of W_2(p || q_values) with p,q_values ~ N(y, SS).
This version DOES assume commutativity of both distributions, i.e. covariance matrices.
This is less general and assumes both distributions are somewhat close together.
When scale_prec is true scale both distributions with old precision matrix.
Args:
policy: current policy
p: mean and sqrt of gaussian p
q: mean and sqrt of gaussian q_values
scale_prec: scale objective by old precision matrix.
This penalizes directions based on old uncertainty/covariance.
Returns: mean part of W2, cov part of W2
"""
mean, sqrt = get_mean_and_sqrt(p, expand=True)
mean_other, sqrt_other = get_mean_and_sqrt(q, expand=True)
if scale_prec:
# maha objective for mean
mean_part = mahalanobis(mean, mean_other, sqrt_other)
else:
# euclidean distance for mean
# mean_part = ch.norm(mean_other - mean, ord=2, axis=1) ** 2
mean_part = ((mean_other - mean) ** 2).sum(1)
cov = get_cov(p)
if scale_prec and False:
# cov constraint scaled with precision of old dist
batch_dim, dim = mean.shape
identity = th.eye(dim, dtype=sqrt.dtype, device=sqrt.device)
sqrt_inv_other = th.linalg.solve(sqrt_other, identity)
c = sqrt_inv_other @ cov @ sqrt_inv_other
cov_part = _batch_trace(
identity + c - 2 * sqrt_inv_other @ sqrt)
else:
# W2 objective for cov assuming normal W2 objective for mean
cov_other = get_cov(q)
cov_part = _batch_trace(
cov_other + cov - 2 * th.bmm(sqrt_other, sqrt))
return mean_part, cov_part