Compare commits

..

2 Commits

Author SHA1 Message Date
7861821d0d Worked on TRPL module 2024-06-02 14:14:12 +02:00
65c6a950aa Use loggers correclty 2024-06-02 14:13:36 +02:00
3 changed files with 37 additions and 51 deletions

View File

@ -9,6 +9,8 @@ from torchrl.record import VideoRecorder
from tensordict import LazyStackedTensorDict, TensorDict
from abc import ABC
from fancy_rl.loggers import TerminalLogger
class OnPolicy(ABC):
def __init__(
self,
@ -32,7 +34,7 @@ class OnPolicy(ABC):
):
self.env_spec = env_spec
self.env_spec_eval = env_spec_eval if env_spec_eval is not None else env_spec
self.loggers = loggers
self.loggers = loggers if loggers != None else [TerminalLogger(None, None)]
self.optimizers = optimizers
self.learning_rate = learning_rate
self.n_steps = n_steps
@ -110,7 +112,7 @@ class OnPolicy(ABC):
batch = batch.to(self.device)
loss = self.train_step(batch)
for logger in self.loggers:
logger.log_scalar({"loss": loss.item()}, step=collected_frames)
logger.log_scalar("loss", loss.item(), step=collected_frames)
if (t + 1) % self.eval_interval == 0:
self.evaluate(t)

View File

@ -1,5 +1,5 @@
import torch
from torchrl.modules import ActorValueOperator, ProbabilisticActor
from torchrl.modules import ProbabilisticActor
from torchrl.objectives import ClipPPOLoss
from torchrl.objectives.value.advantages import GAE
from fancy_rl.algos.on_policy import OnPolicy
@ -9,12 +9,11 @@ class PPO(OnPolicy):
def __init__(
self,
env_spec,
loggers=[],
loggers=None,
actor_hidden_sizes=[64, 64],
critic_hidden_sizes=[64, 64],
actor_activation_fn="Tanh",
critic_activation_fn="Tanh",
shared_stem_sizes=[64],
learning_rate=3e-4,
n_steps=2048,
batch_size=64,

View File

@ -1,11 +1,11 @@
import torch
from torchrl.modules import ActorValueOperator, ProbabilisticActor
from torchrl.modules import ProbabilisticActor
from torchrl.objectives.value.advantages import GAE
from fancy_rl.algos.on_policy import OnPolicy
from fancy_rl.policy import Actor, Critic, SharedModule
from fancy_rl.policy import Actor, Critic
from fancy_rl.objectives import TRPLLoss
class TRPL(OnPolicy):
class PPO(OnPolicy):
def __init__(
self,
env_spec,
@ -14,7 +14,6 @@ class TRPL(OnPolicy):
critic_hidden_sizes=[64, 64],
actor_activation_fn="Tanh",
critic_activation_fn="Tanh",
shared_stem_sizes=[64],
proj_layer_type=None,
learning_rate=3e-4,
n_steps=2048,
@ -28,14 +27,16 @@ class TRPL(OnPolicy):
entropy_coef=0.01,
critic_coef=0.5,
trust_region_coef=10.0,
normalize_advantage=True,
normalize_advantage=False,
device=None,
env_spec_eval=None,
eval_episodes=10,
):
device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.device = device
self.trust_region_layer = None # from proj_layer_type
self.trust_region_layer = None # TODO: from proj_layer_type
self.trust_region_coef = trust_region_coef
# Initialize environment to get observation and action space sizes
self.env_spec = env_spec
@ -43,55 +44,23 @@ class TRPL(OnPolicy):
obs_space = env.observation_space
act_space = env.action_space
# Define the shared, actor, and critic modules
self.shared_module = SharedModule(obs_space, shared_stem_sizes, actor_activation_fn, device)
self.raw_actor = Actor(self.shared_module, act_space, actor_hidden_sizes, actor_activation_fn, device)
self.critic = Critic(self.shared_module, critic_hidden_sizes, critic_activation_fn, device)
# Perfrom projection
self.actor = self.raw_actor # TODO: Project
# Combine into an ActorValueOperator
self.ac_module = ActorValueOperator(
self.shared_module,
self.actor,
self.critic
)
# Define the policy as a ProbabilisticActor
policy = ProbabilisticActor(
module=self.ac_module.get_policy_operator(),
self.critic = Critic(obs_space, critic_hidden_sizes, critic_activation_fn, device)
actor_net = Actor(obs_space, act_space, actor_hidden_sizes, actor_activation_fn, device)
raw_actor = ProbabilisticActor(
module=actor_net,
in_keys=["loc", "scale"],
out_keys=["action"],
distribution_class=torch.distributions.Normal,
return_log_prob=True
)
self.actor = raw_actor # TODO: Proj here
optimizers = {
"actor": torch.optim.Adam(self.actor.parameters(), lr=learning_rate),
"critic": torch.optim.Adam(self.critic.parameters(), lr=learning_rate)
}
self.adv_module = GAE(
gamma=self.gamma,
lmbda=self.gae_lambda,
value_network=self.critic,
average_gae=False,
)
self.loss_module = TRPLLoss(
actor_network=self.actor,
critic_network=self.critic,
trust_region_layer=self.trust_region_layer,
loss_critic_type='MSELoss',
entropy_coef=self.entropy_coef,
critic_coef=self.critic_coef,
trust_region_coef=self.trust_region_coef,
normalize_advantage=self.normalize_advantage,
)
super().__init__(
policy=policy,
env_spec=env_spec,
loggers=loggers,
optimizers=optimizers,
@ -100,15 +69,31 @@ class TRPL(OnPolicy):
batch_size=batch_size,
n_epochs=n_epochs,
gamma=gamma,
gae_lambda=gae_lambda,
total_timesteps=total_timesteps,
eval_interval=eval_interval,
eval_deterministic=eval_deterministic,
entropy_coef=entropy_coef,
critic_coef=critic_coef,
normalize_advantage=normalize_advantage,
clip_range=clip_range,
device=device,
env_spec_eval=env_spec_eval,
eval_episodes=eval_episodes,
)
self.adv_module = GAE(
gamma=self.gamma,
lmbda=gae_lambda,
value_network=self.critic,
average_gae=False,
)
self.loss_module = TRPLLoss(
actor_network=self.actor,
critic_network=self.critic,
trust_region_layer=self.trust_region_layer,
loss_critic_type='l2',
entropy_coef=self.entropy_coef,
critic_coef=self.critic_coef,
trust_region_coef=self.trust_region_coef,
normalize_advantage=self.normalize_advantage,
)