Compare commits
2 Commits
4091df45f5
...
7861821d0d
Author | SHA1 | Date | |
---|---|---|---|
7861821d0d | |||
65c6a950aa |
@ -9,6 +9,8 @@ from torchrl.record import VideoRecorder
|
||||
from tensordict import LazyStackedTensorDict, TensorDict
|
||||
from abc import ABC
|
||||
|
||||
from fancy_rl.loggers import TerminalLogger
|
||||
|
||||
class OnPolicy(ABC):
|
||||
def __init__(
|
||||
self,
|
||||
@ -32,7 +34,7 @@ class OnPolicy(ABC):
|
||||
):
|
||||
self.env_spec = env_spec
|
||||
self.env_spec_eval = env_spec_eval if env_spec_eval is not None else env_spec
|
||||
self.loggers = loggers
|
||||
self.loggers = loggers if loggers != None else [TerminalLogger(None, None)]
|
||||
self.optimizers = optimizers
|
||||
self.learning_rate = learning_rate
|
||||
self.n_steps = n_steps
|
||||
@ -110,7 +112,7 @@ class OnPolicy(ABC):
|
||||
batch = batch.to(self.device)
|
||||
loss = self.train_step(batch)
|
||||
for logger in self.loggers:
|
||||
logger.log_scalar({"loss": loss.item()}, step=collected_frames)
|
||||
logger.log_scalar("loss", loss.item(), step=collected_frames)
|
||||
|
||||
if (t + 1) % self.eval_interval == 0:
|
||||
self.evaluate(t)
|
||||
|
@ -1,5 +1,5 @@
|
||||
import torch
|
||||
from torchrl.modules import ActorValueOperator, ProbabilisticActor
|
||||
from torchrl.modules import ProbabilisticActor
|
||||
from torchrl.objectives import ClipPPOLoss
|
||||
from torchrl.objectives.value.advantages import GAE
|
||||
from fancy_rl.algos.on_policy import OnPolicy
|
||||
@ -9,12 +9,11 @@ class PPO(OnPolicy):
|
||||
def __init__(
|
||||
self,
|
||||
env_spec,
|
||||
loggers=[],
|
||||
loggers=None,
|
||||
actor_hidden_sizes=[64, 64],
|
||||
critic_hidden_sizes=[64, 64],
|
||||
actor_activation_fn="Tanh",
|
||||
critic_activation_fn="Tanh",
|
||||
shared_stem_sizes=[64],
|
||||
learning_rate=3e-4,
|
||||
n_steps=2048,
|
||||
batch_size=64,
|
||||
|
@ -1,11 +1,11 @@
|
||||
import torch
|
||||
from torchrl.modules import ActorValueOperator, ProbabilisticActor
|
||||
from torchrl.modules import ProbabilisticActor
|
||||
from torchrl.objectives.value.advantages import GAE
|
||||
from fancy_rl.algos.on_policy import OnPolicy
|
||||
from fancy_rl.policy import Actor, Critic, SharedModule
|
||||
from fancy_rl.policy import Actor, Critic
|
||||
from fancy_rl.objectives import TRPLLoss
|
||||
|
||||
class TRPL(OnPolicy):
|
||||
class PPO(OnPolicy):
|
||||
def __init__(
|
||||
self,
|
||||
env_spec,
|
||||
@ -14,7 +14,6 @@ class TRPL(OnPolicy):
|
||||
critic_hidden_sizes=[64, 64],
|
||||
actor_activation_fn="Tanh",
|
||||
critic_activation_fn="Tanh",
|
||||
shared_stem_sizes=[64],
|
||||
proj_layer_type=None,
|
||||
learning_rate=3e-4,
|
||||
n_steps=2048,
|
||||
@ -28,14 +27,16 @@ class TRPL(OnPolicy):
|
||||
entropy_coef=0.01,
|
||||
critic_coef=0.5,
|
||||
trust_region_coef=10.0,
|
||||
normalize_advantage=True,
|
||||
normalize_advantage=False,
|
||||
device=None,
|
||||
env_spec_eval=None,
|
||||
eval_episodes=10,
|
||||
):
|
||||
device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
self.device = device
|
||||
|
||||
self.trust_region_layer = None # from proj_layer_type
|
||||
self.trust_region_layer = None # TODO: from proj_layer_type
|
||||
self.trust_region_coef = trust_region_coef
|
||||
|
||||
# Initialize environment to get observation and action space sizes
|
||||
self.env_spec = env_spec
|
||||
@ -43,55 +44,23 @@ class TRPL(OnPolicy):
|
||||
obs_space = env.observation_space
|
||||
act_space = env.action_space
|
||||
|
||||
# Define the shared, actor, and critic modules
|
||||
self.shared_module = SharedModule(obs_space, shared_stem_sizes, actor_activation_fn, device)
|
||||
self.raw_actor = Actor(self.shared_module, act_space, actor_hidden_sizes, actor_activation_fn, device)
|
||||
self.critic = Critic(self.shared_module, critic_hidden_sizes, critic_activation_fn, device)
|
||||
|
||||
# Perfrom projection
|
||||
self.actor = self.raw_actor # TODO: Project
|
||||
|
||||
# Combine into an ActorValueOperator
|
||||
self.ac_module = ActorValueOperator(
|
||||
self.shared_module,
|
||||
self.actor,
|
||||
self.critic
|
||||
)
|
||||
|
||||
# Define the policy as a ProbabilisticActor
|
||||
policy = ProbabilisticActor(
|
||||
module=self.ac_module.get_policy_operator(),
|
||||
self.critic = Critic(obs_space, critic_hidden_sizes, critic_activation_fn, device)
|
||||
actor_net = Actor(obs_space, act_space, actor_hidden_sizes, actor_activation_fn, device)
|
||||
raw_actor = ProbabilisticActor(
|
||||
module=actor_net,
|
||||
in_keys=["loc", "scale"],
|
||||
out_keys=["action"],
|
||||
distribution_class=torch.distributions.Normal,
|
||||
return_log_prob=True
|
||||
)
|
||||
self.actor = raw_actor # TODO: Proj here
|
||||
|
||||
optimizers = {
|
||||
"actor": torch.optim.Adam(self.actor.parameters(), lr=learning_rate),
|
||||
"critic": torch.optim.Adam(self.critic.parameters(), lr=learning_rate)
|
||||
}
|
||||
|
||||
self.adv_module = GAE(
|
||||
gamma=self.gamma,
|
||||
lmbda=self.gae_lambda,
|
||||
value_network=self.critic,
|
||||
average_gae=False,
|
||||
)
|
||||
|
||||
self.loss_module = TRPLLoss(
|
||||
actor_network=self.actor,
|
||||
critic_network=self.critic,
|
||||
trust_region_layer=self.trust_region_layer,
|
||||
loss_critic_type='MSELoss',
|
||||
entropy_coef=self.entropy_coef,
|
||||
critic_coef=self.critic_coef,
|
||||
trust_region_coef=self.trust_region_coef,
|
||||
normalize_advantage=self.normalize_advantage,
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
policy=policy,
|
||||
env_spec=env_spec,
|
||||
loggers=loggers,
|
||||
optimizers=optimizers,
|
||||
@ -100,15 +69,31 @@ class TRPL(OnPolicy):
|
||||
batch_size=batch_size,
|
||||
n_epochs=n_epochs,
|
||||
gamma=gamma,
|
||||
gae_lambda=gae_lambda,
|
||||
total_timesteps=total_timesteps,
|
||||
eval_interval=eval_interval,
|
||||
eval_deterministic=eval_deterministic,
|
||||
entropy_coef=entropy_coef,
|
||||
critic_coef=critic_coef,
|
||||
normalize_advantage=normalize_advantage,
|
||||
clip_range=clip_range,
|
||||
device=device,
|
||||
env_spec_eval=env_spec_eval,
|
||||
eval_episodes=eval_episodes,
|
||||
)
|
||||
)
|
||||
|
||||
self.adv_module = GAE(
|
||||
gamma=self.gamma,
|
||||
lmbda=gae_lambda,
|
||||
value_network=self.critic,
|
||||
average_gae=False,
|
||||
)
|
||||
|
||||
self.loss_module = TRPLLoss(
|
||||
actor_network=self.actor,
|
||||
critic_network=self.critic,
|
||||
trust_region_layer=self.trust_region_layer,
|
||||
loss_critic_type='l2',
|
||||
entropy_coef=self.entropy_coef,
|
||||
critic_coef=self.critic_coef,
|
||||
trust_region_coef=self.trust_region_coef,
|
||||
normalize_advantage=self.normalize_advantage,
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user