import pytest import numpy as np from fancy_rl import TRPL import gymnasium as gym @pytest.fixture def simple_env(): return gym.make('CartPole-v1') def test_trpl_instantiation(): trpl = TRPL("CartPole-v1") assert isinstance(trpl, TRPL) @pytest.mark.parametrize("learning_rate", [1e-4, 3e-4, 1e-3]) @pytest.mark.parametrize("n_steps", [1024, 2048]) @pytest.mark.parametrize("batch_size", [32, 64, 128]) @pytest.mark.parametrize("gamma", [0.95, 0.99]) @pytest.mark.parametrize("max_kl", [0.01, 0.05]) def test_trpl_initialization_with_different_hps(learning_rate, n_steps, batch_size, gamma, max_kl): trpl = TRPL( "CartPole-v1", learning_rate=learning_rate, n_steps=n_steps, batch_size=batch_size, gamma=gamma, max_kl=max_kl ) assert trpl.learning_rate == learning_rate assert trpl.n_steps == n_steps assert trpl.batch_size == batch_size assert trpl.gamma == gamma assert trpl.max_kl == max_kl def test_trpl_predict(simple_env): trpl = TRPL("CartPole-v1") obs, _ = simple_env.reset() action, _ = trpl.predict(obs) assert isinstance(action, np.ndarray) assert action.shape == simple_env.action_space.shape def test_trpl_learn(): trpl = TRPL("CartPole-v1", n_steps=64, batch_size=32) env = gym.make("CartPole-v1") obs, _ = env.reset() for _ in range(64): action, _ = trpl.predict(obs) next_obs, reward, done, truncated, _ = env.step(action) trpl.store_transition(obs, action, reward, done, next_obs) obs = next_obs if done or truncated: obs, _ = env.reset() loss = trpl.learn() assert isinstance(loss, dict) assert "policy_loss" in loss assert "value_loss" in loss def test_trpl_training(simple_env): trpl = TRPL("CartPole-v1", total_timesteps=10000) initial_performance = evaluate_policy(trpl, simple_env) trpl.train() final_performance = evaluate_policy(trpl, simple_env) assert final_performance > initial_performance, "TRPL should improve performance after training" def evaluate_policy(policy, env, n_eval_episodes=10): total_reward = 0 for _ in range(n_eval_episodes): obs, _ = env.reset() done = False while not done: action, _ = policy.predict(obs) obs, reward, terminated, truncated, _ = env.step(action) total_reward += reward done = terminated or truncated return total_reward / n_eval_episodes