import pytest import numpy as np from fancy_rl import PPO import gymnasium as gym @pytest.fixture def simple_env(): return gym.make('CartPole-v1') def test_ppo_instantiation(): ppo = PPO("CartPole-v1") assert isinstance(ppo, PPO) @pytest.mark.parametrize("learning_rate", [1e-4, 3e-4, 1e-3]) @pytest.mark.parametrize("n_steps", [1024, 2048]) @pytest.mark.parametrize("batch_size", [32, 64, 128]) @pytest.mark.parametrize("n_epochs", [5, 10]) @pytest.mark.parametrize("gamma", [0.95, 0.99]) @pytest.mark.parametrize("clip_range", [0.1, 0.2, 0.3]) def test_ppo_initialization_with_different_hps(learning_rate, n_steps, batch_size, n_epochs, gamma, clip_range): ppo = PPO( "CartPole-v1", learning_rate=learning_rate, n_steps=n_steps, batch_size=batch_size, n_epochs=n_epochs, gamma=gamma, clip_range=clip_range ) assert ppo.learning_rate == learning_rate assert ppo.n_steps == n_steps assert ppo.batch_size == batch_size assert ppo.n_epochs == n_epochs assert ppo.gamma == gamma assert ppo.clip_range == clip_range def test_ppo_predict(simple_env): ppo = PPO("CartPole-v1") obs, _ = simple_env.reset() action, _ = ppo.predict(obs) assert isinstance(action, np.ndarray) assert action.shape == simple_env.action_space.shape def test_ppo_learn(): ppo = PPO("CartPole-v1", n_steps=64, batch_size=32) env = gym.make("CartPole-v1") obs, _ = env.reset() for _ in range(64): action, _ = ppo.predict(obs) next_obs, reward, done, truncated, _ = env.step(action) ppo.store_transition(obs, action, reward, done, next_obs) obs = next_obs if done or truncated: obs, _ = env.reset() loss = ppo.learn() assert isinstance(loss, dict) assert "policy_loss" in loss assert "value_loss" in loss