fancy_rl/test/test_trpl.py

77 lines
2.5 KiB
Python

import pytest
import numpy as np
from fancy_rl import TRPL
import gymnasium as gym
@pytest.fixture
def simple_env():
return gym.make('CartPole-v1')
def test_trpl_instantiation():
trpl = TRPL("CartPole-v1")
assert isinstance(trpl, TRPL)
@pytest.mark.parametrize("learning_rate", [1e-4, 3e-4, 1e-3])
@pytest.mark.parametrize("n_steps", [1024, 2048])
@pytest.mark.parametrize("batch_size", [32, 64, 128])
@pytest.mark.parametrize("gamma", [0.95, 0.99])
@pytest.mark.parametrize("max_kl", [0.01, 0.05])
def test_trpl_initialization_with_different_hps(learning_rate, n_steps, batch_size, gamma, max_kl):
trpl = TRPL(
"CartPole-v1",
learning_rate=learning_rate,
n_steps=n_steps,
batch_size=batch_size,
gamma=gamma,
max_kl=max_kl
)
assert trpl.learning_rate == learning_rate
assert trpl.n_steps == n_steps
assert trpl.batch_size == batch_size
assert trpl.gamma == gamma
assert trpl.max_kl == max_kl
def test_trpl_predict(simple_env):
trpl = TRPL("CartPole-v1")
obs, _ = simple_env.reset()
action, _ = trpl.predict(obs)
assert isinstance(action, np.ndarray)
assert action.shape == simple_env.action_space.shape
def test_trpl_learn():
trpl = TRPL("CartPole-v1", n_steps=64, batch_size=32)
env = gym.make("CartPole-v1")
obs, _ = env.reset()
for _ in range(64):
action, _ = trpl.predict(obs)
next_obs, reward, done, truncated, _ = env.step(action)
trpl.store_transition(obs, action, reward, done, next_obs)
obs = next_obs
if done or truncated:
obs, _ = env.reset()
loss = trpl.learn()
assert isinstance(loss, dict)
assert "policy_loss" in loss
assert "value_loss" in loss
def test_trpl_training(simple_env):
trpl = TRPL("CartPole-v1", total_timesteps=10000)
initial_performance = evaluate_policy(trpl, simple_env)
trpl.train()
final_performance = evaluate_policy(trpl, simple_env)
assert final_performance > initial_performance, "TRPL should improve performance after training"
def evaluate_policy(policy, env, n_eval_episodes=10):
total_reward = 0
for _ in range(n_eval_episodes):
obs, _ = env.reset()
done = False
while not done:
action, _ = policy.predict(obs)
obs, reward, terminated, truncated, _ = env.step(action)
total_reward += reward
done = terminated or truncated
return total_reward / n_eval_episodes