fancy_rl/fancy_rl/algos/trpl.py

100 lines
3.3 KiB
Python

import torch
from torchrl.modules import ProbabilisticActor
from torchrl.objectives.value.advantages import GAE
from fancy_rl.algos.on_policy import OnPolicy
from fancy_rl.policy import Actor, Critic
from fancy_rl.objectives import TRPLLoss
class TRPL(OnPolicy):
def __init__(
self,
env_spec,
loggers=None,
actor_hidden_sizes=[64, 64],
critic_hidden_sizes=[64, 64],
actor_activation_fn="Tanh",
critic_activation_fn="Tanh",
proj_layer_type=None,
learning_rate=3e-4,
n_steps=2048,
batch_size=64,
n_epochs=10,
gamma=0.99,
gae_lambda=0.95,
total_timesteps=1e6,
eval_interval=2048,
eval_deterministic=True,
entropy_coef=0.01,
critic_coef=0.5,
trust_region_coef=10.0,
normalize_advantage=False,
device=None,
env_spec_eval=None,
eval_episodes=10,
):
device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.device = device
self.trust_region_layer = None # TODO: from proj_layer_type
self.trust_region_coef = trust_region_coef
# Initialize environment to get observation and action space sizes
self.env_spec = env_spec
env = self.make_env()
obs_space = env.observation_space
act_space = env.action_space
self.critic = Critic(obs_space, critic_hidden_sizes, critic_activation_fn, device)
actor_net = Actor(obs_space, act_space, actor_hidden_sizes, actor_activation_fn, device)
raw_actor = ProbabilisticActor(
module=actor_net,
in_keys=["loc", "scale"],
out_keys=["action"],
distribution_class=torch.distributions.Normal,
return_log_prob=True
)
self.actor = raw_actor # TODO: Proj here
optimizers = {
"actor": torch.optim.Adam(self.actor.parameters(), lr=learning_rate),
"critic": torch.optim.Adam(self.critic.parameters(), lr=learning_rate)
}
super().__init__(
env_spec=env_spec,
loggers=loggers,
optimizers=optimizers,
learning_rate=learning_rate,
n_steps=n_steps,
batch_size=batch_size,
n_epochs=n_epochs,
gamma=gamma,
total_timesteps=total_timesteps,
eval_interval=eval_interval,
eval_deterministic=eval_deterministic,
entropy_coef=entropy_coef,
critic_coef=critic_coef,
normalize_advantage=normalize_advantage,
device=device,
env_spec_eval=env_spec_eval,
eval_episodes=eval_episodes,
)
self.adv_module = GAE(
gamma=self.gamma,
lmbda=gae_lambda,
value_network=self.critic,
average_gae=False,
)
self.loss_module = TRPLLoss(
actor_network=self.actor,
critic_network=self.critic,
trust_region_layer=self.trust_region_layer,
loss_critic_type='l2',
entropy_coef=self.entropy_coef,
critic_coef=self.critic_coef,
trust_region_coef=self.trust_region_coef,
normalize_advantage=self.normalize_advantage,
)