fancy_rl/fancy_rl/ppo.py

97 lines
3.1 KiB
Python

import torch
import torch.nn as nn
from torchrl.objectives import ClipPPOLoss
from torchrl.objectives.value.advantages import GAE
from torchrl.record.loggers import get_logger
from on_policy import OnPolicy
from policy import Actor, Critic
import gymnasium as gym
class PPO(OnPolicy):
def __init__(
self,
env_spec,
loggers=None,
actor_hidden_sizes=[64, 64],
critic_hidden_sizes=[64, 64],
actor_activation_fn="ReLU",
critic_activation_fn="ReLU",
learning_rate=3e-4,
n_steps=2048,
batch_size=64,
n_epochs=10,
gamma=0.99,
gae_lambda=0.95,
total_timesteps=1e6,
eval_interval=2048,
eval_deterministic=True,
entropy_coef=0.01,
critic_coef=0.5,
normalize_advantage=True,
clip_range=0.2,
device=None,
env_spec_eval=None,
eval_episodes=10,
):
# Initialize environment to get observation and action space sizes
env = self.make_env(env_spec)
obs_space = env.observation_space
act_space = env.action_space
actor_activation_fn = getattr(nn, actor_activation_fn)
critic_activation_fn = getattr(nn, critic_activation_fn)
self.actor = Actor(obs_space, act_space, hidden_sizes=actor_hidden_sizes, activation_fn=actor_activation_fn)
self.critic = Critic(obs_space, hidden_sizes=critic_hidden_sizes, activation_fn=critic_activation_fn)
super().__init__(
policy=self.actor,
env_spec=env_spec,
loggers=loggers,
learning_rate=learning_rate,
n_steps=n_steps,
batch_size=batch_size,
n_epochs=n_epochs,
gamma=gamma,
gae_lambda=gae_lambda,
total_timesteps=total_timesteps,
eval_interval=eval_interval,
eval_deterministic=eval_deterministic,
entropy_coef=entropy_coef,
critic_coef=critic_coef,
normalize_advantage=normalize_advantage,
clip_range=clip_range,
device=device,
env_spec_eval=env_spec_eval,
eval_episodes=eval_episodes,
)
self.adv_module = GAE(
gamma=self.gamma,
lmbda=self.gae_lambda,
value_network=self.critic,
average_gae=False,
)
self.loss_module = ClipPPOLoss(
actor_network=self.actor,
critic_network=self.critic,
clip_epsilon=self.clip_range,
loss_critic_type='MSELoss',
entropy_coef=self.entropy_coef,
critic_coef=self.critic_coef,
normalize_advantage=self.normalize_advantage,
)
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=self.learning_rate)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=self.learning_rate)
def train_step(self, batch):
self.actor_optimizer.zero_grad()
self.critic_optimizer.zero_grad()
loss = self.loss_module(batch)
loss.backward()
self.actor_optimizer.step()
self.critic_optimizer.step()
return loss