fancy_rl/test/test_ppo.py
2024-10-21 15:24:36 +02:00

78 lines
2.4 KiB
Python

import pytest
import numpy as np
from fancy_rl import PPO
import gymnasium as gym
def simple_env():
return gym.make('LunarLander-v2', continuous=True)
def test_ppo_instantiation():
ppo = PPO(simple_env)
assert isinstance(ppo, PPO)
def test_ppo_instantiation_from_str():
ppo = PPO('CartPole-v1')
assert isinstance(ppo, PPO)
@pytest.mark.parametrize("learning_rate", [1e-4, 3e-4, 1e-3])
@pytest.mark.parametrize("n_steps", [1024, 2048])
@pytest.mark.parametrize("batch_size", [32, 64, 128])
@pytest.mark.parametrize("n_epochs", [5, 10])
@pytest.mark.parametrize("gamma", [0.95, 0.99])
@pytest.mark.parametrize("clip_range", [0.1, 0.2, 0.3])
def test_ppo_initialization_with_different_hps(learning_rate, n_steps, batch_size, n_epochs, gamma, clip_range):
ppo = PPO(
simple_env,
learning_rate=learning_rate,
n_steps=n_steps,
batch_size=batch_size,
n_epochs=n_epochs,
gamma=gamma,
clip_range=clip_range
)
assert ppo.learning_rate == learning_rate
assert ppo.n_steps == n_steps
assert ppo.batch_size == batch_size
assert ppo.n_epochs == n_epochs
assert ppo.gamma == gamma
assert ppo.clip_range == clip_range
def test_ppo_predict():
ppo = PPO(simple_env)
env = ppo.make_env()
obs, _ = env.reset()
action, _ = ppo.predict(obs)
assert isinstance(action, np.ndarray)
assert action.shape == env.action_space.shape
def test_ppo_learn():
ppo = PPO(simple_env, n_steps=64, batch_size=32)
env = ppo.make_env()
obs, _ = env.reset()
for _ in range(64):
action, _ = ppo.predict(obs)
obs, reward, done, truncated, _ = env.step(action)
if done or truncated:
obs, _ = env.reset()
def test_ppo_training():
ppo = PPO(simple_env, total_timesteps=10000)
env = ppo.make_env()
initial_performance = evaluate_policy(ppo, env)
ppo.train()
final_performance = evaluate_policy(ppo, env)
assert final_performance > initial_performance, "PPO should improve performance after training"
def evaluate_policy(policy, env, n_eval_episodes=10):
total_reward = 0
for _ in range(n_eval_episodes):
obs, _ = env.reset()
done = False
while not done:
action, _ = policy.predict(obs)
obs, reward, terminated, truncated, _ = env.step(action)
total_reward += reward
done = terminated or truncated
return total_reward / n_eval_episodes