Perf tests
This commit is contained in:
parent
404320c5cc
commit
1096dbd848
50
perf_tests/perf_test_frobenius.py
Normal file
50
perf_tests/perf_test_frobenius.py
Normal file
@ -0,0 +1,50 @@
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
import time
|
||||
from itpal_jax import FrobeniusProjection
|
||||
|
||||
def generate_params(key, batch_size, dim):
|
||||
keys = jax.random.split(key, 2)
|
||||
return {
|
||||
"loc": jax.random.normal(keys[0], (batch_size, dim)),
|
||||
"scale": jax.nn.softplus(jax.random.normal(keys[1], (batch_size, dim)))
|
||||
}
|
||||
|
||||
def main():
|
||||
# Test parameters
|
||||
batch_size = 32
|
||||
dim = 8
|
||||
n_iterations = 1000
|
||||
|
||||
# Initialize projector
|
||||
proj = FrobeniusProjection(mean_bound=0.1, cov_bound=0.1, contextual_std=True)
|
||||
|
||||
# Compile function
|
||||
proj_fn = lambda p, op: proj.project(p, op)
|
||||
proj_fn = jax.jit(proj_fn)
|
||||
|
||||
# Generate initial key
|
||||
key = jax.random.PRNGKey(0)
|
||||
|
||||
# Warmup
|
||||
for _ in range(10):
|
||||
key, subkey1, subkey2 = jax.random.split(key, 3)
|
||||
params = generate_params(subkey1, batch_size, dim)
|
||||
old_params = generate_params(subkey2, batch_size, dim)
|
||||
proj_fn(params, old_params)
|
||||
|
||||
# Time projections
|
||||
start_time = time.time()
|
||||
for _ in range(n_iterations):
|
||||
key, subkey1, subkey2 = jax.random.split(key, 3)
|
||||
params = generate_params(subkey1, batch_size, dim)
|
||||
old_params = generate_params(subkey2, batch_size, dim)
|
||||
proj_fn(params, old_params)
|
||||
end_time = time.time()
|
||||
|
||||
print(f"Frobenius Projection:")
|
||||
print(f"Average time per projection: {(end_time - start_time) / n_iterations * 1000:.3f} ms")
|
||||
print(f"Total time for {n_iterations} iterations: {end_time - start_time:.3f} s")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
49
perf_tests/perf_test_kl.py
Normal file
49
perf_tests/perf_test_kl.py
Normal file
@ -0,0 +1,49 @@
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
import time
|
||||
from itpal_jax import KLProjection
|
||||
|
||||
def generate_params(key, batch_size, dim):
|
||||
keys = jax.random.split(key, 2)
|
||||
return {
|
||||
"loc": jax.random.normal(keys[0], (batch_size, dim)),
|
||||
"scale": jax.nn.softplus(jax.random.normal(keys[1], (batch_size, dim)))
|
||||
}
|
||||
|
||||
def main():
|
||||
# Test parameters
|
||||
batch_size = 32
|
||||
dim = 8
|
||||
n_iterations = 1000
|
||||
|
||||
# Initialize projector
|
||||
proj = KLProjection(mean_bound=0.1, cov_bound=0.1, contextual_std=True)
|
||||
|
||||
# No JIT for KL projection since it uses C++ backend
|
||||
proj_fn = lambda p, op: proj.project(p, op)
|
||||
|
||||
# Generate initial key
|
||||
key = jax.random.PRNGKey(0)
|
||||
|
||||
# Warmup
|
||||
for _ in range(10):
|
||||
key, subkey1, subkey2 = jax.random.split(key, 3)
|
||||
params = generate_params(subkey1, batch_size, dim)
|
||||
old_params = generate_params(subkey2, batch_size, dim)
|
||||
proj_fn(params, old_params)
|
||||
|
||||
# Time projections
|
||||
start_time = time.time()
|
||||
for _ in range(n_iterations):
|
||||
key, subkey1, subkey2 = jax.random.split(key, 3)
|
||||
params = generate_params(subkey1, batch_size, dim)
|
||||
old_params = generate_params(subkey2, batch_size, dim)
|
||||
proj_fn(params, old_params)
|
||||
end_time = time.time()
|
||||
|
||||
print(f"KL Projection:")
|
||||
print(f"Average time per projection: {(end_time - start_time) / n_iterations * 1000:.3f} ms")
|
||||
print(f"Total time for {n_iterations} iterations: {end_time - start_time:.3f} s")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
50
perf_tests/perf_test_wasserstein.py
Normal file
50
perf_tests/perf_test_wasserstein.py
Normal file
@ -0,0 +1,50 @@
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
import time
|
||||
from itpal_jax import WassersteinProjection
|
||||
|
||||
def generate_params(key, batch_size, dim):
|
||||
keys = jax.random.split(key, 2)
|
||||
return {
|
||||
"loc": jax.random.normal(keys[0], (batch_size, dim)),
|
||||
"scale": jax.nn.softplus(jax.random.normal(keys[1], (batch_size, dim)))
|
||||
}
|
||||
|
||||
def main():
|
||||
# Test parameters
|
||||
batch_size = 32
|
||||
dim = 8
|
||||
n_iterations = 1000
|
||||
|
||||
# Initialize projector
|
||||
proj = WassersteinProjection(mean_bound=0.1, cov_bound=0.1, contextual_std=True)
|
||||
|
||||
# Compile function
|
||||
proj_fn = lambda p, op: proj.project(p, op)
|
||||
proj_fn = jax.jit(proj_fn)
|
||||
|
||||
# Generate initial key
|
||||
key = jax.random.PRNGKey(0)
|
||||
|
||||
# Warmup
|
||||
for _ in range(10):
|
||||
key, subkey1, subkey2 = jax.random.split(key, 3)
|
||||
params = generate_params(subkey1, batch_size, dim)
|
||||
old_params = generate_params(subkey2, batch_size, dim)
|
||||
proj_fn(params, old_params)
|
||||
|
||||
# Time projections
|
||||
start_time = time.time()
|
||||
for _ in range(n_iterations):
|
||||
key, subkey1, subkey2 = jax.random.split(key, 3)
|
||||
params = generate_params(subkey1, batch_size, dim)
|
||||
old_params = generate_params(subkey2, batch_size, dim)
|
||||
proj_fn(params, old_params)
|
||||
end_time = time.time()
|
||||
|
||||
print(f"Wasserstein Projection:")
|
||||
print(f"Average time per projection: {(end_time - start_time) / n_iterations * 1000:.3f} ms")
|
||||
print(f"Total time for {n_iterations} iterations: {end_time - start_time:.3f} s")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user