revert kl, cxant kit compile c-binding
This commit is contained in:
parent
4d6ed9b3ac
commit
404320c5cc
@ -160,26 +160,28 @@ class KLProjection(BaseProjection):
|
|||||||
old_cov = old_scale_or_tril ** 2
|
old_cov = old_scale_or_tril ** 2
|
||||||
|
|
||||||
mask = cov_part > self.cov_bound
|
mask = cov_part > self.cov_bound
|
||||||
|
proj_scale_or_tril = scale_or_tril # Start with original scale
|
||||||
|
|
||||||
# Always compute both branches and use matrix operations to select
|
if mask.any():
|
||||||
if self.full_cov:
|
if self.full_cov:
|
||||||
proj_cov = project_full_covariance(cov, scale_or_tril, old_scale_or_tril, self.cov_bound)
|
proj_cov = project_full_covariance(cov, scale_or_tril, old_scale_or_tril, self.cov_bound)
|
||||||
is_invalid = jnp.isnan(proj_cov.mean(axis=(-2, -1)))
|
is_invalid = jnp.isnan(proj_cov.mean(axis=(-2, -1)))
|
||||||
valid_mask = mask & ~is_invalid
|
proj_scale_or_tril = jnp.where(is_invalid[..., None, None], old_scale_or_tril, scale_or_tril)
|
||||||
|
mask = mask & ~is_invalid
|
||||||
# Compute cholesky for all, let matrix ops handle selection
|
chol = jnp.linalg.cholesky(proj_cov)
|
||||||
chol = jnp.linalg.cholesky(proj_cov)
|
proj_scale_or_tril = jnp.where(mask[..., None, None], chol, proj_scale_or_tril)
|
||||||
mask_matrix = valid_mask[..., None, None].astype(scale_or_tril.dtype)
|
else:
|
||||||
return mask_matrix * chol + (1 - mask_matrix) * scale_or_tril
|
proj_cov = project_diag_covariance(cov, old_cov, self.cov_bound)
|
||||||
|
is_invalid = (jnp.isnan(proj_cov.mean(axis=-1)) |
|
||||||
|
jnp.isinf(proj_cov.mean(axis=-1)) |
|
||||||
|
(proj_cov.min(axis=-1) < 0))
|
||||||
|
proj_scale_or_tril = jnp.where(is_invalid[..., None], old_scale_or_tril, scale_or_tril)
|
||||||
|
mask = mask & ~is_invalid
|
||||||
|
proj_scale_or_tril = jnp.where(mask[..., None], jnp.sqrt(proj_cov), scale_or_tril)
|
||||||
else:
|
else:
|
||||||
proj_cov = project_diag_covariance(cov, old_cov, self.cov_bound)
|
proj_scale_or_tril = scale_or_tril
|
||||||
is_invalid = (jnp.isnan(proj_cov.mean(axis=-1)) |
|
|
||||||
jnp.isinf(proj_cov.mean(axis=-1)) |
|
|
||||||
(proj_cov.min(axis=-1) < 0))
|
|
||||||
valid_mask = mask & ~is_invalid
|
|
||||||
|
|
||||||
mask_matrix = valid_mask[..., None].astype(scale_or_tril.dtype)
|
return proj_scale_or_tril
|
||||||
return mask_matrix * jnp.sqrt(proj_cov) + (1 - mask_matrix) * scale_or_tril
|
|
||||||
|
|
||||||
def _validate_inputs(self, policy_params, old_policy_params):
|
def _validate_inputs(self, policy_params, old_policy_params):
|
||||||
"""Validate input parameters have correct format."""
|
"""Validate input parameters have correct format."""
|
||||||
|
Loading…
Reference in New Issue
Block a user