metastable-baselines/metastable_baselines/misc/givens.py

62 lines
1.8 KiB
Python
Raw Permalink Normal View History

# Source : https://github.com/diadochos/givens-torch
# TODO: License
import itertools
import torch
import torch.nn as nn
def G_transpose(D, i, j, theta):
"""Generate Givens rotation matrix.
>>> G_transpose(2, 0, 1, torch.FloatTensor([[3.1415 / 2]]))
tensor([[ 4.6329e-05, 1.0000e+00],
[-1.0000e+00, 4.6329e-05]])
"""
R = torch.eye(D)
s, c = torch.sin(theta), torch.cos(theta)
R[i, i] = c
R[j, j] = c
R[i, j] = s
R[j, i] = -s
return R
class Rotation(nn.Module):
def __init__(self, D):
"""
>>> # Initialized as an identity.
>>> A, R = torch.eye(3), Rotation(3)
>>> torch.all(A.eq(R(A))).item()
True
"""
super().__init__()
self.D = D
self.theta = torch.zeros(
(len(list(itertools.combinations(range(self.D), 2))), ))
def forward(self, x):
"""Apply rotation.
>>> A, R = torch.eye(3), Rotation(3)
>>> R.theta = torch.FloatTensor([3.1415 / 2, 0., 0.])
>>> R(A)
tensor([[ 4.6329e-05, 1.0000e+00, 0.0000e+00],
[-1.0000e+00, 4.6329e-05, 0.0000e+00],
[ 0.0000e+00, 0.0000e+00, 1.0000e+00]])
"""
for idx, (i, j) in enumerate(itertools.combinations(range(self.D), 2)):
x = torch.matmul(x, G_transpose(self.D, i, j, self.theta[idx]))
return x
def reverse(self, x):
"""Apply reverse rotation.
>>> A, R = torch.eye(3), Rotation(3)
>>> R.weight = torch.FloatTensor([1., 2., 3.])
>>> torch.any(A.eq(R(A))).item()
True
>>> torch.all(A.eq(R.reverse(R(A)))).item()
True
"""
for idx, (i, j) in reversed(list(enumerate(itertools.combinations(range(self.D), 2)))):
x = torch.matmul(x, G_transpose(self.D, i, j, -self.theta[idx]))
return x